Author's Latest Posts


AI Drives Re-Engineering Of Nearly Everything In Chips


AI's ability to mine patterns across massive quantities of data is causing fundamental changes in how chips are used, how they are designed, and how they are packaged and built. These shifts are especially apparent in high-performance AI architectures being used inside of large data centers, where chiplets are being deployed to process, move, and store massive amounts of data. But they also ... » read more

What’s Changing In SerDes


SerDes is all about pushing data through the smallest number of physical channels. But when it comes to AI, more data needs to be moved, and it has to be moved more quickly. Todd Bermensolo, product marketing manager at Alphawave Semi, talks about the impact of faster data movement on the transmitter (more power) and on the receiver (gain and advanced equalization), how to ensure signal inte... » read more

First-Time Silicon Success Plummets


First-time silicon success is falling sharply due to rising complexity, the need for more iterations as chipmakers shift from monolithic chips to multi-die assemblies, and an increasing amount of customization that makes design and verification more time-consuming. Details from a new functional verification survey[1] highlight the growing difficulty of developing advanced chips that are both... » read more

Chip Failures: Prevention And Responses Over Time


Experts at the Table: Semiconductor Engineering sat down to discuss the causes of chip failures, how to respond to them, and how that can change over time, with Steve Pateras, vice president of marketing and business development at Synopsys; Noam Brousard, vice president of solutions engineering at proteanTecs; Harry Foster, chief verification scientist at Siemens EDA; and Jerome Toublanc, hi... » read more

Optimizing Data Movement In SoCs And Advanced Packages


The amount of data that needs to move around a chip is growing exponentially, driven by the rollout of AI and more sensors everywhere. There may be hundreds of IP blocks, more compute elements, and many more wires to contend with. Andy Nightingale, vice president of product management and marketing at Arteris, talks about the demand for low-latency on-chip communication in increasingly complex ... » read more

Changes In Motor Control


Motors are changing in fundamental ways, and you can actually hear the difference. Vacuums, air conditioners, and home appliances are getting quieter. They're also becoming more efficient, able to last longer on a single battery charge or drawing less energy from the grid, and they're becoming more secure. Steve Tateosian, senior vice president for Infineon's IoT, Compute & Wireless Busines... » read more

What’s Changing In Outlier Detection


Commonly used outlier detection approaches, such as parts average testing or determining whether a die is good based upon other dies in the immediate neighborhood, are falling short in advanced packages and SoCs. Some devices may pass tests and still fail in the field. In the past, this was solved by adding margin into designs, but that margin now takes too big a bite out of performance and pow... » read more

Scenario Coverage In Formal Verification


A rapid increase in complexity with heterogeneous assemblies and advanced-node chips is raising all sorts of questions on the formal verification side about the completeness of coverage. Engineers may assume proofs are complete, but in many cases they're black boxes that provide little or no insights into what's actually being proven. This is where scenario coverage comes into play. Ashish Darb... » read more

Cracking The Memory Wall


Processor performance continues to improve exponentially, with more processor cores, parallel instructions, and specialized processing elements, but it is far outpacing improvements in bandwidth and memory. That gap, the so-called memory wall, has persisted throughout most of this century, but now it is becoming more pronounced. SRAM scaling is slowing at advanced nodes, which means SRAM takes ... » read more

Using AI In Semiconductor Inspection


AI is exceptionally good at spotting anomalies in semiconductor inspection. The challenge is training different models for different inspection tools and topographies, and knowing which model to use at any particular time. Different textures in backgrounds are difficult for traditional algorithms, for example. But once machine learning models are trained properly, they have proven effective in ... » read more

← Older posts