Author's Latest Posts


More To Quantum Computing Than Qubits


A couple of weeks ago, I posted an article about qubits based on the nitrogen-vacancy (N-V) center in diamond. I’m working on one about qubits based on superconducting loops with Josephson junctions. But it’s important to remember that the qubit technology alone tells only part of the story of a quantum computer. Quantum computers, like conventional computers, need ways to store data and wa... » read more

Engineering For Next-Gen Memory Performance


When only a few electrons mean the difference between the ON and the OFF state, it’s difficult to manufacture [getkc id="22" kc_name="memory"] elements with consistent, reliable performance. This is the situation conventional capacitance-based memories face as critical dimensions drop to just a few nanometers. As a result, device designers are considering a wide range of alternative memory... » read more

How To Make A Qubit


As discussed in Part 1 of this series, quantum information processing may offer elegant solutions to a number of important problems in computation. Actually building a quantum computer, however, is not so easy. Part 1 used an isolated hydrogen molecule as a model two-qubit system. Molecular orbitals are simple to explain and readily monitored by well-established techniques. A viable qubit te... » read more

Introduction To Quantum Computing


Quantum computing has attracted a lot of attention lately. Recent revelations about the extent of the U.S. National Security Agency’s data collection programs, along with several large-scale corporate data breaches, have called attention to the need for secure communications. Quantum computing has potentially far-reaching implications for data security, both reducing the effectiveness of conv... » read more

Challenges In 3D Resists


3D integration straddles the line between CMOS fabs and packaging and assembly houses. Depending on the structure being fabricated, the most appropriate process might be more “CMOS-like” or more “package-like.” For example, in CMOS fabs lithography means spin-on photoresist, exposed by a high precision stepper. Inherent in this approach is an assumption that the wafer surface is flat... » read more

New Challenges For Post-Silicon Channel Materials


In order to bring alternative channel materials into the CMOS mainstream, manufacturers need not just individual transistor devices, but fully manufacturable process flows. Work presented at the recent IEEE Electron Device Meeting (Washington, D.C., Dec. 9-11, 2013) showed that substantial work remains to be done on almost all aspects of such a flow. First and most fundamentally, it is diffi... » read more

The List Of Unknowns Grows After Silicon


As discussed earlier in this series, most proposed alternative channel schemes depend on germanium channels for pMOS transistors, and InGaAs channels for nMOS transistors. Of the two materials, InGaAs poses by far the more difficult integration challenges. Germanium has been present in advanced silicon CMOS fabs for several technology generations, having been introduced used in strained silicon... » read more

Germanium wedge-FETs pry away misfit dislocations


Any approach to alternative channel integration must consider the lattice mismatch between silicon and other channel materials. Some schemes, such as IMEC’s selective epitaxy, view the lattice mismatch as an obstacle and look for ways to minimize its effects. This point of view certainly has merit: misfit dislocations do significantly degrade transistor performance. Still, back in 2011 Shu-Ha... » read more

What’s After Silicon?


As discussed in the first article in this series, germanium is one of the leading candidates to succeed silicon as the channel material for advanced transistors, and has been for several years. The fundamental challenges of germanium integration were detailed at length in 2007. Unfortunately, knowing what the issues are does not necessarily lead to a solution. When a MOSFET transistor turns ... » read more

Alternative Channel Materials For Post-Silicon FinFETs


At first glance, other semiconductors always have looked more attractive to device designers than silicon. Both germanium and III-V compound semiconductors have higher carrier mobility, allowing faster switching at the same device size. And yet, as manufacturers begin to consider alternative channel materials for sub-10nm devices, the industry is remembering why silicon became a standard in ... » read more

← Older posts Newer posts →