中文 English

Author's Latest Posts


Inspecting And Testing GaN Power Semis


As demand for new automotive battery electric vehicles (BEVs) heats up, automakers are looking for solutions to meet strict zero-defect goals in power semiconductors. Gallium nitride (GaN) and silicon carbide (SiC) wide-bandgap power semiconductors offer automakers a range of new EV solutions, but questions remain on how to meet the stringent quality goals of the automotive industry. Among t... » read more

GaN Application Base Widens, Adoption Grows


Gallium nitride (GaN) is beginning to show up across a broad range of power semiconductor applications due to its wide bandgap, enabling fast-charging, very high speeds, and much smaller form factors than silicon-based chips. Unlike silicon carbide (SiC), another wide-bandgap technology, GaN is a lateral rather than a vertical device. GaN tops out at about 900 volts, which limits its use in ... » read more

Inspecting, Testing, And Measuring SiC


Achieving the auto industry's stringent zero defect goals is becoming a big challenge for makers of silicon carbide substrates, which are struggling to achieve sufficient yields and reliability as they migrate from 150mm to 200mm wafers and shift their focus away from pure silicon. SiC is a combination of silicon and harder carbide materials, and it has emerged as a key technology for batter... » read more

The Silicon Carbide Race Begins


The growing adoption of silicon carbide (SiC) for a variety of automotive chips has reached the tipping point where most chipmakers now consider it a relatively safe bet, setting off a scramble to stake a claim and push this wide-bandgap technology into the mainstream. SiC holds great promise for a number of automotive applications, particularly for battery electric vehicles. It can extend d... » read more

Automotive IC Shortage Drags On


The current automotive semiconductor shortages won’t end anytime soon. When the COVID-19 pandemic hit in early 2020, it wreaked havoc on the worldwide supply chain, but it especially caught automakers flat-footed. When the auto OEMs canceled chip orders during a roughly eight-week period of plant shutdowns, they later found their supplies of critical ICs had evaporated. To make it an ev... » read more