Author's Latest Posts


HD Map (EdgeMap) Crowdsources Data From Connected Vehicles in Auto Edge Computing


New research paper from University of Nebraska-Lincoln, Xidian University and University of North Carolina at Charlotte. Abstract "High definition (HD) map needs to be updated frequently to capture road changes, which is constrained by limited specialized collection vehicles. To maintain an up-to-date map, we explore crowdsourcing data from connected vehicles. Updating the map collaborati... » read more

Die-level Thinning and Integrating Route For Singulated MPW Chips Using Both Silicon Sensors and CMOS Devices


Abstract "Die-level thinning, handling, and integration of singulated dies from multi-project wafers (MPW) are often used in research, early-stage development, and prototyping of flexible devices. There is a high demand for thin silicon devices for several applications, such as flexible electronics. To address this demand, we study a novel post-processing method on two silicon devices, an el... » read more

Image Sensor Trained To Classify Optically Projected Images By Reading Out The Few Most Relevant Pixels


New research paper "Sparse pixel image sensor" from Institute of Photonics, Vienna University of Technology. Abstract "As conventional frame-based cameras suffer from high energy consumption and latency, several new types of image sensors have been devised, with some of them exploiting the sparsity of natural images in some transform domain. Instead of sampling the full image, those devices... » read more

A Case for Transparent Reliability in DRAM Systems


New technical paper from ETH Zurich and TU Delft. Abstract "Today's systems have diverse needs that are difficult to address using one-size-fits-all commodity DRAM. Unfortunately, although system designers can theoretically adapt commodity DRAM chips to meet their particular design goals (e.g., by reducing access timings to improve performance, implementing system-level RowHammer mitigati... » read more

Current Knowledge & Future Development In 2D Magnetic Materials Research


Abstract: "Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D... » read more

Pyrolyzed Cellulose Nanofiber Paper (CNP) Semiconductor with a 3D Network Structure


Abstract Semiconducting nanomaterials with 3D network structures exhibit various fascinating properties such as electrical conduction, high permeability, and large surface areas, which are beneficial for adsorption, separation, and sensing applications. However, research on these materials is substantially restricted by the limited trans-scalability of their structural design and tunability of... » read more

Artificial intelligence deep learning for 3D IC reliability prediction


New research from National Yang Ming Chiao Tung University, National Center for High-Performance Computing (Taiwan), Tunghai University, MA-Tek Inc, and UCLA. Abstract "Three-dimensional integrated circuit (3D IC) technologies have been receiving much attention recently due to the near-ending of Moore’s law of minimization in 2D IC. However, the reliability of 3D IC, which is greatly infl... » read more

Efficacy of Transistor Interleaving in DICE Flip-Flops at a 22 nm FD SOI Technology Node


New research paper from University of Saskatchewan, with funding by NSERC and the Cisco University Research Program. Abstract "Fully Depleted Silicon on Insulator (FD SOI) technology nodes provide better resistance to single event upsets than comparable bulk technologies, but upsets are still likely to occur at nano-scale feature sizes, and additional hardening techniques should be explor... » read more

Hardware-Supported Patching of Security Bugs in Hardware IP Blocks


New research paper from Duke University, University of Calgary, NYU & Intel. Abstract: "To satisfy various design requirements and application needs, designers integrate multiple Intellectual Property blocks (IPs) to produce a system-on-chip (SoC). For improved survivability, designers should be able to patch the SoC to mitigate potential security issues arising from hardware IPs; for incre... » read more

Stress tensor mesostructures for deterministic figuring of thin substrates


New research paper from MIT and University of Arizona, funded by NASA. Abstract "Accessing the immense value of freeform surfaces for mass-sensitive applications such as space optics or metaform optical components requires fabrication processes that are suited to figuring thin substrates. We present stress tensor mesostructures for precisely correcting figure errors, even after microstruc... » read more

← Older posts Newer posts →