Author's Latest Posts


Is It Safe To Assume That All “Passed” Die Are Actually “Good” Die?


In a world where Quality and Brand Protection is King, as certainly is the case for the automotive and medical device industries where strict minimal DPPM (defective parts per million) requirements are a common constraint, new methods for “escape” prevention and outlier detection are constantly being evaluated and implemented by semiconductor vendors to prevent any defective or marginal par... » read more

Are All Known Good Tested Devices Created Equal?


Your known good parts all had passed their required wafer sort, final test, and system-level tests and were shipped to your customers. However, as we all know, a known good part or device sometimes does not stay good and may end up failing prematurely in the field and flagged as an RMA (return material authorization) by your customer. But why is it that some good parts fail early and others las... » read more

A More Efficient Way To Calculate Device Specs Of Thousands Of Tests For Improved Quality And Yield


Today’s devices are required to pass thousands of parametric tests prior to being shipped to customers. A key challenge test engineers face, in addition to optimizing the number of tests they run on the device, is how to quickly and accurately define the true specification limits that should be used to determine if the device is “good”. Device specification limits that are too wide may... » read more

Finally, Realizing The Full Benefits Of Parallel Site-To-Site (S2S) Testing


A very common and well-known practice by manufacturers during the IC test process is to test as many of the device die or packaged parts as possible in parallel (i.e. sites) during wafer sort and final test in order to increase test time efficiency and lower overall test costs. The constraints that typically restrict how many test sites can be used at any given time are the design I/O and capac... » read more