Author's Latest Posts


Quantifiable Assurance: From IPs to Platforms


Abstract: "Hardware vulnerabilities are generally considered more difficult to fix than software ones because of their persistent nature after fabrication. Thus, it is crucial to assess the security and fix the potential vulnerabilities in the earlier design phases, such as Register Transfer Level (RTL), gate-level or physical layout. The focus of the existing security assessment techniques i... » read more

An End-to-End Bitstream Tamper Attack Against Flip-Chip FPGAs


Abstract "FPGA bitstream encryption and authentication can be defeated by various techniques and it is critical to understand how these vulnerabilities enable extraction and tampering of commercial FPGA bitstreams. We exploit the physical vulnerability of bitstream encryption keys to readout using failure analysis equipment and conduct an end-to-end bitstream tamper attack. Our work undersco... » read more

Design of strongly nonlinear graphene nanoelectromechanical systems in quantum regime


ABSTRACT "We report on the analysis and design of atomically thin graphene resonant nanoelectromechanical systems (NEMS) that can be engineered to exhibit anharmonicity in the quantum regime. Analysis of graphene two-dimensional (2D) NEMS resonators suggests that with device lateral size scaled down to ∼10–30 nm, restoring force due to the third-order (Duffing) stiffness in graphene NE... » read more

Spin–orbit torque engineering in β-W/CoFeB heterostructures with W–Ta or W–V alloy layers between β-W and CoFeB


Abstract "The spin–orbit torque (SOT) resulting from a spin current generated in a nonmagnetic transition metal layer offers a promising magnetization switching mechanism for spintronic devices. To fully exploit this mechanism, in practice, materials with high SOT efficiencies are indispensable. Moreover, new materials need to be compatible with semiconductor processing. This study introduce... » read more

Field-free spin-orbit torque-induced switching of perpendicular magnetization in a ferrimagnetic layer with a vertical composition gradient


Abstract "Current-induced spin-orbit torques (SOTs) are of interest for fast and energy-efficient manipulation of magnetic order in spintronic devices. To be deterministic, however, switching of perpendicularly magnetized materials by SOT requires a mechanism for in-plane symmetry breaking. Existing methods to do so involve the application of an in-plane bias magnetic field, or incorporation o... » read more

Conceptual Model of the Automated Pedestrian Simulation System for Unmanned Vehicles and ADAS Systems Testing


Abstract: "This article is devoted to the issue of creating the concept of an automated system for simulating pedestrians on the road surface, intended for testing unmanned vehicles and active driver assistance systems. The article examines in detail the prerequisites for the creation of such a system and its relevance for Russia. The existing analogues of this system are demonstrated, their... » read more

Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration


Abstract: "Carbon nanotubes have a helical structure wherein the chirality determines whether they are metallic or semiconducting. Using in situ transmission electron microscopy, we applied heating and mechanical strain to alter the local chirality and thereby control the electronic properties of individual single-wall carbon nanotubes. A transition trend toward a larger chiral angle region wa... » read more

TAP-2.5D: A Thermally-Aware Chiplet Placement Methodology for 2.5D Systems


Abstract "Heterogeneous systems are commonly used today to sustain the historic benefits we have achieved through technology scaling. 2.5D integration technology provides a cost-effective solution for designing heterogeneous systems. The traditional physical design of a 2.5D heterogeneous system closely packs the chiplets to minimize wirelength, but this leads to a thermally-inefficient design... » read more

A Review on the Fabrication and Reliability of Three-Dimensional Integration Technologies for Microelectronic Packaging: Through-Si-via and Solder Bumping Process


Abstract "With the continuous miniaturization of electronic devices and the upcoming new technologies such as Artificial Intelligence (AI), Internet of Things (IoT), fifth-generation cellular networks (5G), etc., the electronics industry is achieving high-speed, high-performance, and high-density electronic packaging. Three-dimensional (3D) Si-chip stacking using through-Si-via (TSV) and sol... » read more

Holistic Die-to-Die Interface Design Methodology for 2.5-D Multichip-Module Systems


Abstract: "More than Moore technologies can be supported by system-level diversification enabled by chiplet-based integrated systems within multichip modules (MCMs) and silicon interposer-based 2.5-D systems. The division of large system-on-chip dies into smaller chiplets with different technology nodes specific to the chiplet application requirement enables the performance enhancement at the ... » read more

← Older posts Newer posts →