Author's Latest Posts


SpZip: Architectural Support for Effective Data Compression In Irregular Applications


Technical paper link is here. Published in: 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA) Yifan Yang (MIT); Joel Emer (MIT / NVIDIA); Daniel Sanchez (MIT) Abstract: "Irregular applications, such as graph analytics and sparse linear algebra, exhibit frequent indirect, data-dependent accesses to single or short sequences of elements that cause high ma... » read more

Hardware-Enabled Security: Container Platform Security Prototype


Date Published: June 2021, NIST Author(s) Michael Bartock (NIST), Murugiah Souppaya (NIST), Jerry Wheeler (Intel), Tim Knoll (Intel), Uttam Shetty (Intel), Ryan Savino (Intel), Joseprabu Inbaraj (AMI), Stefano Righi (AMI), Karen Scarfone (Scarfone Cybersecurity) Abstract In today’s cloud data centers and edge computing, attack surfaces have significantly increased, hacking ha... » read more

Intelligent Agents for the Optimization of Atomic Layer Deposition


"Atomic layer deposition (ALD) is a highly controllable thin film synthesis approach with applications in computing, energy, and separations. The flexibility of ALD means that it can access a massive chemical catalogue; however, this chemical and process diversity results in significant challenges in determining processing parameters that result in stable and uniform film growth with minimal pr... » read more

Extremely Large Exposure Field w/Fine Resolution Lithography Tech To Enable Next-Gen Panel Level Advanced Packaging


Abstract—"The growing demand for heterogeneous integration is driven by the 5G market that includes smartphones, data centers, servers, HPC, AI and IoT applications. Next-generation packaging technologies require tighter overlay to accommodate a larger package size with finer pitch chip interconnects on large format flexible panels. Heterogeneous integration enables next-generation device per... » read more

Graphene-based PUFs that are reconfigurable and resilient to ML attacks


Researchers at Pennsylvania State University propose using graphene to create physically unclonable functions (PUFs) that are energy efficient, scalable, and secure against AI attacks. Abstract "Graphene has a range of properties that makes it suitable for building devices for the Internet of Things. However, the deployment of such devices will also likely require the development of s... » read more

Tailoring spatial entropy in EUV focused beams for multispectral ptychography


The Advanced Research Center for Nanolithography (ARCNL) and Vrije Universiteit Amsterdam have developed a new class of diffractive optical elements that paves the way towards more widespread use of EUV microscopy. Abstract "Diffractive optics can be used to accurately control optical wavefronts, even in situations where refractive components such as lenses are not available. For instance, c... » read more

Electrically connected spin-torque oscillators array for 2.4 GHz WiFi band transmission and energy harvesting


Researchers at the National University of Singapore and Tohoku University developed a device that uses spin-torque oscillators (STOs) to harvest energy from 2.4GHz Wi-Fi signals and wirelessly power an LED without need for a battery.   Technical Paper Link: Abstract "The mutual synchronization of spin-torque oscillators (STOs) is critical for communication, energy harvesting ... » read more

Multistep staircase avalanche photodiodes with extremely low noise & deterministic amplification (lidar)


Engineers at University of Texas at Austin and University of Virginia developed a light detector that can amplify weak light signals and reduce noise to improve the accuracy of lidar. Find technical paper here. Abstract "In 1982, Capasso and co-workers proposed the solid-state analogue of the photomultiplier tube, termed the staircase avalanche photodiode. Through a combination of co... » read more

Emergent magnetic monopoles isolated using quantum-annealing computer


Using D-Wave’s quantum-annealing computer, Los Alamos National Laboratory has shown that it’s possible to isolate magnetic monopoles. This research could one day enable future nanomagnets.   Abstract: "Artificial spin ices are frustrated spin systems that can be engineered, wherein fine tuning of geometry and topology has allowed the design and characterization of exotic eme... » read more

Efficient Multi-GPU Shared Memory via Automatic Optimization of Fine-Grained Transfers


Harini Muthukrishnan (U of Michigan); David Nellans, Daniel Lustig (NVIDIA); Jeffrey A. Fessler, Thomas Wenisch (U of Michigan). Abstract—"Despite continuing research into inter-GPU communication mechanisms, extracting performance from multiGPU systems remains a significant challenge. Inter-GPU communication via bulk DMA-based transfers exposes data transfer latency on the GPU’s critical... » read more

← Older posts Newer posts →