Intelligent Agents for the Optimization of Atomic Layer Deposition

Three optimization strategies and performance comparisons in optimizing four simulated ALD processes.

“Atomic layer deposition (ALD) is a highly controllable thin film synthesis approach with applications in computing, energy, and separations. The flexibility of ALD means that it can access a massive chemical catalogue; however, this chemical and process diversity results in significant challenges in determining processing parameters that result in stable and uniform film growth with minimal precursor consumption. In situ measurements of the ALD growth per cycle (GPC) can accelerate process development but it still requires expert intuition and time-consuming trial and error to identify acceptable processing parameters. This procedure is made more difficult by the presence of experimental noise in the GPC values and the complexity of ALD surface chemistries. A need exists for efficient optimization approaches capable of autonomously determining processing conditions resulting in optimal ALD film growth. In this work, we present the development of three optimization strategies and compare their performance in optimizing four simulated ALD processes. Furthermore, the effect of noise in the GPC measurements on optimization convergence is studied.”

Technical Paper Link


Noah H. Paulson, Angel Yanguas-Gil, Osama Y. Abuomar, et al

ACS Appl. Mater. Interfaces 2021, 13, 14, 17022–17033
Publication Date:April 5, 2021
Copyright © 2021 UChicago Argonne, LLC, Operator of Argonne National Laboratory. Published by American Chemical Society

Leave a Reply

(Note: This name will be displayed publicly)