Arms Race In Chip Performance


An AI arms race is taking shape across continents. While this is perilous on many fronts, it could provide a massive boost for the chip technology—and help to solve a long-simmering problem in computing, as well as lots of lesser ones. The U.S. government this week announced its AI Initiative, joining an international scramble for the fastest way to do multiply/accumulate and come up with ... » read more

Low Power At The Edge


The tech world has come to the realization in recent months that there is far too much data to process everything in the cloud. Now it is starting to come to grips with what that really means for edge and near-edge computing. There still are no rules for where or how that data will be parsed, but there is a growing recognition that some level of pre-processing will be necessary, and that in tur... » read more

Security, Scaling and Power


If anyone has doubts about the slowdown and increasing irrelevance of Moore's Law, Intel's official unveiling of its advanced packaging strategy should leave little doubt. Inertia has ended and the roadmap is being rewritten. Intel's discussion of advanced packaging is nothing new. The company has been public about its intentions for years, and started dropping hints back when Pat Gelsinger ... » read more

Accelerators Everywhere. Now What?


It's a good time to be a data scientist, but it's about to become much more challenging for software and hardware engineers. Understanding the different types and how data flows is the next path forward in system design. As the number of sources of data rises, creating exponential spikes in the volume of data, entirely new approaches to computing will be required. The problem is understandi... » read more

Making AI Run Faster


The semiconductor industry has woken up to the fact that heterogeneous computing is the way forward and that inferencing will require more than a GPU or a CPU. The numbers being bandied about by the 30 or so companies working on this problem are 100X improvements in performance. But how to get there isn't so simple. It requires four major changes, as well as some other architectural shifts. ... » read more

The Security Penalty


It's not clear if Meltdown, Spectre and Foreshadow caused actual security breaches, but they did prompt big processor vendors like Intel, Arm, AMD and IBM to fix these vulnerabilities before they were made public by Google's Project Zero. While all of this may make data center managers and consumers feel better in one respect, it has created a level of panic of a different sort. For decades,... » read more

More Performance At The Edge


Shrinking features has been a relatively inexpensive way to improve performance and, at least for the past few decades, to lower power. While device scaling will continue all the way to 3nm and maybe even further, it will happen at a slower pace. Alongside of that scaling, though, there are different approaches on tap to ratchet up performance even with chips developed at older nodes. This i... » read more

Energy At The Edge


Ever since the first mention of the IoT, everyone assumed there would be billions of highly efficient battery-powered devices that drew milliwatts of energy. As it turns out, we are about to head down a rather different path. The enormous amount of data that will be gathered by sensors everywhere cannot possibly be sent to the cloud for processing. The existing infrastructure cannot handle i... » read more

Blazing-Fast Performance


When it comes to raw performance, there's nothing like a supercomputer. Until recently, though, most of this was simply bragging rights about whose supercomputer was faster. A trillion calculations (petaflop), more or less, doesn't mean that much outside of scientific circles. What's changing is that companies and governments now can utilize these blazing fast machines across a wider swath o... » read more

Higher Performance, Lower Power Everywhere


The future of technology is all about information—not just data—at our fingertips, anywhere and at any time. But making all of this work properly will require massive improvements in both performance and power efficiency. There are several distinct pieces to this picture. One is architectural, which is possibly the simplest to understand, the most technologically challenging to realize, ... » read more

← Older posts Newer posts →