The Race To 10/7nm


Amid the ongoing ramp of 16/14nm processes in the market, the industry is now gearing up for the next nodes. In fact, GlobalFoundries, Intel, Samsung and TSMC are racing each other to ship 10nm and/or 7nm technologies. The current iterations of 10nm and 7nm technologies are scaled versions of today’s 16nm/14nm finFETs with traditional copper interconnects, high-k/metal-gate and low-k diele... » read more

North America Equipment Market Rebounds


Coming off of two consecutive down years, the North America semiconductor fab equipment market is set to experience growth this year and into 2018. The market is primarily being driven by investments from Samsung, Intel, GlobalFoundries, and Micron, which are expected to account for 85 percent of fab equipment purchased in the region this year. These fab equipment purchases are targeted ... » read more

Power Just One Piece Of The Puzzle At 10nm And Below


With dynamic power density and rising leakage power becoming more problematic at each new node, it is more important than ever to look at designs today with power in mind from the very start. As part of this complex picture of electronic design today, every piece in the design flow must tie together for the greatest efficiency and optimization. While this is partly power, there are more... » read more

Power Challenges At 10nm And Below


Current density is becoming much more problematic at 10nm and beyond, increasing the amount of power management that needs to be incorporated into each chip and boosting both design costs and time to market. Current per unit of area has been rising since 90nm, forcing design teams to leverage a number of power-related strategies such as [getkc id="143" kc_name="dynamic voltage and frequency... » read more

Intel Inside The Package


Mark Bohr, senior fellow and director of process architecture and integration at Intel, sat down with Semiconductor Engineering to discuss the growing importance of multi-chip integration in a package, the growing emphasis on heterogeneity, and what to expect at 7nm and 5nm. What follows are excerpts of that interview. SE: There’s a move toward more heterogeneity in designs. Intel clearly ... » read more

Design For Silicon Success At 7nm


Next-generation automotive, mobile and high-performance computing applications demand the use of 7nm SoCs to deliver greater functionality and higher performance at much lower power. According to Gartner, when compared to 16nm/14nm technology, 7nm offers 35% speed improvement, 65% less power, and 3.3X density improvement. Hence, despite a whopping cost of $271M — per Gartner's estimate — to... » read more

22nm Process War Begins


Many foundry customers at the 28nm node and above are developing new chips and are exploring the idea of migrating to 16nm/14nm and beyond. But for the most part, those companies are stuck because they can’t afford the soaring IC design costs at advanced nodes. Seeking to satisfy a potential gap in the market, [getentity id="22819" comment="GlobalFoundries"], [getentity id="22846" e_name="... » read more

Inside Next-Gen Transistors


David Fried, chief technology officer at [getentity id="22210" e_name="Coventor"], sat down with Semiconductor Engineering to discuss the IC industry, China, scaling, transistors and process technology. What follows are excerpts of that conversation. SE: In a recent roundtable discussion you talked about some of the big challenges facing the IC industry. One of your big concerns involves th... » read more

Moore’s Law: A Status Report


Moore's Law has been synonymous with "smaller, faster, cheaper" for the past 52 years, but increasingly it is viewed as just one of a number of options—some competing, some complementary—as the chip industry begins zeroing in on specific market needs. This does not make [getkc id="74" comment="Moore's Law"] any less relevant. The number of companies racing from 16/14nm to 7nm is higher t... » read more

Impact Of Rising SoC Design Costs On Innovation


If there is one truism in the semiconductor market, it is that rising costs will impact unit demand at some point if they continue long enough. The subject of this blog deals not with device ASPs; but rather with rising SoC design costs, and their effect on the number of designs at the advanced nodes. Even though the mechanism governing each set of numbers is different (device ASPs vs. design c... » read more

← Older posts