Four Things Every Engineer Should Know About PFAS


What are PFAS chemicals? “PFAS” is an acronym for per- and polyfluoroalkyl substances. These man-made chemicals migrate into soil, water, and air when produced and used. There are many ways humans come in contact with PFAS, such as in non-stick cookware or cosmetics, but by far the most significant impact on human health is when PFAS is consumed in drinking water. Exposure to PFAS may resu... » read more

Back-End Packaging And Test: From Lessons Learned To Future Innovations


The semiconductor industry is a hallmark of technological innovation, evolving rapidly to meet the demands of an increasingly digital world. At its core, semiconductor manufacturing involves two main stages: front-end processes, (wafer fabrication) and back-end processes (packaging and test). Wafer fabrication consists of creating microscopic electronic circuits on a silicon wafer. Packaging an... » read more

Multi-Tier Die Stacking Enables Efficient Manufacturing


Advanced packaging is currently facing a critical challenge to increase manufacturing efficiency without sacrificing device performance. Vertical integration techniques, such as multi-tier die stacking and hybrid bonding, enable increased integration density, therefore improving yield of high-quality devices. However, these highly precise processes require significant attention to defectivity... » read more

Five Questions To Ask When Selecting A Temporary Bonding And Debonding System


High-bandwidth memory blocks (HBM), microprocessors, field-programmable gate arrays (FPGA), AI accelerators, and other devices used in advanced system-level packaging all rely on temporary bonding and debonding systems to shrink their footprint. Understanding which properties play the most crucial role in device reliability and efficient production will ensure you are maximizing your yield, whi... » read more

Exploring The Fundamentals Of Photolithography


In the semiconductor materials industry, photolithography is a crucial technology for creating intricate electronic circuits. Essentially, it’s the art of printing at the nanoscale level, enabling the precise patterning of semiconductor materials. The ability to do this well is important for companies in the industry because it determines how detailed and efficient microchips can be. This aff... » read more

Photonic Debonding Provides A Cost-Efficient, High-Throughput Debond Process


As emerging technologies require ultrathinned device wafers, traditional debonding processes can pose some challenges. Photonic debonding is an innovative debonding process utilizing a carrier coated with an inorganic metal release layer that aids in the release of the thinned wafer from the carrier substrate with no force and no damage to the delicate wafer upon activation of the release layer... » read more

5 Reasons Why Defect Reduction Is Critical In Semiconductor Material Success


Semiconductors may be small, but the impacts they have are significant. Semiconductors used in life-dependent applications, such as pacemakers, defibrillators, life support systems, automotive safety systems, or in aviation need to be fail-proof. A device smaller than a centimeter with features just a few nanometers has no margin of error. This blog shares why it’s important to detect materia... » read more

A Technical Guide To Selecting A Photosensitive Permanent Bonding Material


A photosensitive permanent bonding material enables the creation of high-quality permanent bonds between dissimilar materials used in the creation of MEMS and sensors. Having a thorough understanding of the materials and product performance is crucial to the success of the end application. In this article, we explore nine criteria used to evaluate a polymeric photosensitive permanent bonding ma... » read more

Hybrid Bonding Basics: What Is Hybrid Bonding?


Hybrid bonding is the key to paving an innovative future in advanced packaging. Hybrid bonding provides a solution that enables higher bandwidth and increased power and signal integrity. As the industry is looking to enhance the performance of final devices through scaling system-level interconnections, hybrid bonding provides the most promising solution with the ability to integrate several di... » read more

5 Tips To Successfully Work Hybrid


Brewer Science is a global company that has international offices and remote employees since I was first hired in 1993. When the pandemic started in 2020, the company easily adapted to a remote/work-from-home structure. We have a company culture that thrives on change, in part due to the innovating and pioneering mindset the company was founded on. These cultural and business practices, combine... » read more

← Older posts