No-Compromise Packetized Test Improves DFT Efforts


Design for Test (DFT) managers often must make difficult and sometimes costly trade-offs between test implementation effort and manufacturing test cost. The traditional method for evaluating these trade-offs has been to use hierarchical DFT methods in a divide-and-conquer approach. In hierarchical DFT efforts, all implementation, including pattern generation and verification, is done at the cor... » read more

Improving Functional Safety For ICs


The exponential growth of electronics in automobiles have stimulated significant innovation towards the development of advanced safety mechanisms. In addition to very high-quality manufacturing test, ICs for safety-critical applications need in-system test to detect faults and monitor circuit aging. Scan-based logic built-in-self-test (LBIST) is the technique used for in-system test, but tradit... » read more

An Optimal Path To DFT Automation


To keep up with time-to-market demands when SoCs keep increasing in size and complexity requires the adoption of better DFT flows and technologies. One of the most successful changes in design-for-test (DFT) flows in recent years has been the deployment of hierarchical DFT. Taking the divide-and-conquer approach delivers real savings in test time and cost, plus keeps DFT out of the critical pat... » read more

Planning Ahead For In-System Test Of Automotive ICs


Automobiles are increasingly more like electronic devices than mechanical platforms. As a share of the total cost of a car, electronics components have grown from about 5% in 1970 to 35% in 2010. Electronics are projected to account for 50% by 2030 (Deloitte, 2019). Some of the electronics are for passive operations, like display or In-Vehicle Infotainment (IVI) systems, but a growing proportio... » read more

Squeezing Out More Test Compression


The trend in semiconductors leads to more IC test data volume, longer test times, and higher test costs. Embedded deterministic test (EDT) has continued to deliver more compression, which has been quite effective at containing test costs. For many designs, standard test compressions is enough, but ICs for use in automotive and medical devices require a higher manufacturing test quality, which t... » read more

A Breakthrough In Silicon Bring-Up


The current semiconductor market is seeing increasingly complex silicon devices for applications like 5G wireless communications, autonomous driving, and artificial intelligence. One of the ways designers are working to control design time and cost is through the adoption of IJTAG (IEEE 1687) for a plug-and-play style IP integration during design. The benefits of using IJTAG are still emerging,... » read more

The Single Best DFT Move You Can Make


A proven method to simplify a complex problem is to break it into smaller chunks. In the case of today’s large, complex SoCs, this means using hierarchical methods to design the blocks, then combine the results at the top level. While this sounds obvious, it hasn’t always been practical or technologically feasible to perform some tasks, like DFT, at the block level and translate that work s... » read more

Highly Efficient Scan Diagnosis With Dynamic Partitioning


Charged with the task of improving yield, product engineers need to find the location of defects in manufactured ICs quickly and efficiently. Typically, they use volume scan diagnosis to generate large amounts of data from failing test cycles, which is then analyzed to reveal the location of defects. Scan failure data provides the basis for many decisions in the failure analysis and yield impro... » read more

Hierarchical DFT On A Flat Layout Design


The use of hierarchical DFT methods is growing as design size and complexity stresses memory requirements and design schedules.  Hierarchical DFT divides the design into smaller pieces, creates test structures and patterns at the core level, then retargets the core patterns to the chip level. But, if you need to perform the physical place and route on the full flat design, can you still take a... » read more

Challenges Of Logic BiST In Automotive ICs


The electronics in passenger cars continues to grow, and much of it is bound by the strict functional safety requirements formalized in the ISO 26262 standard. The ICs that drive the electronics systems in automobiles are also increasingly complex, designed to execute artificial intelligence algorithms that govern emerging self-driving capabilities. Designers are quickly adopting comprehensi... » read more

← Older posts