How To Meet Functional Safety Requirements With Built-In-Self-Test


With the rapid growth in semiconductor content in today’s vehicles, IC designers need to improve their process of meeting functional safety requirements defined by the ISO 26262 standard. The ISO 26262 standard defines the levels of functional safety, known as Automotive Safety Integrity Level (ASIL), and is a mandatory part of an automotive system design process. The ASIL categories range... » read more

Simulation-driven EV Battery Pack Design And Manufacturing In The Decade Of Vehicle Electrification


In the last decade, the electric vehicle (EV) industry has grown tremendously from just few offerings to today, when every automaker is working to electrify its vehicle portfolio. A lion’s share of this growth can be attributed to the advancements in lithium-ion (Li-ion) battery technology. Since 2010, Li-ion battery costs have come down by 87% [1] and energy density has tripled [2]. Automake... » read more

Four Steps To ISO 26262 Safety Mechanism Insertion And Validation


By Ping Yeung, Jin Hou, Vinayak Desai, and Jacob Wiltgen The complexity of automotive integrated circuits (ICs) has grown exponentially with the introduction of advanced driver-assistance systems and autonomous-drive technologies. Directly correlated to this hike in complexity is the increased burden of ensuring an IC is protected from random hardware faults—functional failures that occur ... » read more

Automating Failure Mode Analysis For Automotive Safety


By Chuck Battikha and Doug Smith If you’ve ever had to create a Failure Modes, Effects and Diagnostic Analysis (FMEDA), you know how difficult and painstaking a task it can be. But FMEDAs are essential in ensuring that your SoCs satisfy ISO 26262 functional safety analysis requirements for automotive designs and for demonstrating that your design is indeed safe. Because of the intens... » read more

Automotive Industry On Course To Disruption And Evolution


Consumers expect a lot from their vehicles. We expect vehicles to serve not only as transportation, but as hubs of entertainment and connectivity that can help us manage busy lives, or relax after long days. Someday, we may even expect our cars to do the driving themselves, without any human intervention. Automotive manufacturers consistently strive to meet these expectations by delivering high... » read more

Automotive E/E Architectures Are Key To Continued Innovation


Modern vehicles commonly are described as “computers-on-wheels” due to the recent explosion of computing power and electronic features manufacturers are equipping in their vehicles. The world’s first automobiles were relatively simple, and entirely mechanically operated. The first automotive electrical components were not even available until the 1930s, when manufacturers began offering v... » read more

Functional Safety Verification For AV SoC Designs Accelerated With Advanced Tools


Autonomous vehicles (AVs) will be the culmination of dozens of highly complex systems, incorporating state-of-the-art technologies in electronics hardware, sensors, software, and more. Conceiving and designing these systems is certain to be one of the greatest challenges for today’s engineers. The only greater challenge will be convincing a wary public that these automated systems are safer d... » read more

How Does A Changing Automotive Ecosystem Affect Tier-1 Suppliers?


Tier-1 automotive suppliers have an enormous opportunity in the development of autonomous vehicles (AVs). Fortune.com sees these vehicles contributing $7 trillion in economic activity by the year 2050. But this opportunity comes with a challenge: the whole supply chain is being disrupted by new participants and new technologies that are making these AVs possible. Semiconductor companies and spe... » read more

Coordinating Automotive Embedded Software Development Requires A Unified Approach


The rising intelligence and connectivity of vehicles are making the interactions between software and physical systems more complex, exposing the deficiencies of current processes, tools and methods. To compete in the technological race for the future of mobility, companies must evolve their software development processes today. A common digital thread connecting software and physical systems t... » read more

Machine Learning For Autonomous Drive


Advances in Artificial Intelligence (AI) and Machine Learning (ML) is arguably the biggest technical innovation of the last decade. Although the algorithms for AI have been in existence for many years, the recent explosion of both data as well as faster compute made it possible to apply those algorithms to solve many real life use cases. One of the most prominent of these use cases is fully aut... » read more

← Older posts Newer posts →