System Bits: June 27


Entangling photons for bug-proof communication With the increasing processing power of computers, conventional encryption of data is becoming increasingly insecure, reminded Fraunhofer researchers that are proposing one solution is coding with entangled photons. The team is developing a quantum coding source that allows the transport of entangled photons from satellites, expected to be an impo... » read more

System Bits: June 20


The case against general-purpose processors With a large number of emerging applications such as implantables, wearables, printed electronics, and IoT have ultra-low area and power constraints, and these applications relying on ultra-low-power general purpose microcontrollers and microprocessors, there are drawbacks, researchers at the University of Illinois and the University of Minnesota rem... » read more

System Bits: June 13


Nimble-fingered robots enabled by deep learning Grabbing awkwardly shaped items that humans regularly pick up daily is not so easy for robots, as they don’t know where to apply grip. To overcome this, UC Berkeley researchers have a built a robot that can pick up and move unfamiliar, real-world objects with a 99% success rate. Berkeley professor Ken Goldberg, postdoctoral researcher Jeff M... » read more

System Bits: June 6


Silicon nanosheet-based builds 5nm transistor To enable the manufacturing of 5nm chips, IBM, GLOBALFOUNDRIES, Samsung, and equipment suppliers have developed what they say is an industry-first process to build 5nm silicon nanosheet transistors. This development comes less than two years since developing a 7nm test node chip with 20 billion transistors. Now, they’ve paved the way for 30 billi... » read more

System Bits: May 30


Diamonds for quantum computing Quantum computers are experimental devices that offer large speedups on some computational problems, and one promising approach to building them involves harnessing nanometer-scale atomic defects in diamond materials. At the same time, practical, diamond-based quantum computing devices will require the ability to position those defects at precise locations in com... » read more

System Bits: May 23


Next-era transistors engage diamonds To advance the development of more robust and energy-efficient electronics, materials scientists from Japan’s National Institute for Materials Sciences have developed a new diamond transistor fabrication process. To address the challenges of silicon, Jiangwei Liu and the team have recently described new work developing diamond-based transistors. “Sil... » read more

System Bits: May 16


Refrigerator for quantum computers Quantum physicist Mikko Möttönen at Aalto University in Finland and his team have invented a quantum-circuit refrigerator, meant to reduce errors in quantum computing. The research results suggest how harmful errors in quantum computing can be removed — a new twist towards a functioning quantum computer. The team reminded that quantum computers use... » read more

System Bits: May 9


Graphene adopts exotic electronic states In a platform that may be used to explore avenues for quantum computing, MIT researchers have found that a flake of graphene, when brought in close proximity with two superconducting materials, can inherit some of those materials’ superconducting qualities. They reminded that in normal conductive materials such as silver and copper, electric curren... » read more

System Bits: May 2


AI systems echo human prejudices One of the concerns about the of future artificial intelligence systems includes the perception that these machine-based systems are coldly logical and objectively rational, however, this may not be the case. In fact, in a new study by Princeton University researchers has shown how machines can be reflections of their creators in potentially problematic ways. ... » read more

System Bits: April 25


Graphene used as copy machine for cheaper semiconductor wafers MIT researchers reminded that in 2016, annual global semiconductor sales reached their highest-ever point, at $339 billion worldwide while in that same year the semiconductor industry spent about $7.2 billion worldwide on wafers. Now, a technique developed by MIT engineers may vastly reduce the overall cost of that wafer technology... » read more

← Older posts Newer posts →