Can smart manufacturing make the whole fab more efficient?
To unlock the full potential of their manufacturing systems and personnel, companies in many industries are rapidly moving toward highly automated systems and digital data-driven methods and tools. Widely known as “smart manufacturing” or Industry 4.0, the resulting productivity improvements are often so dramatic that many people are calling this shift a new industrial revolution.
The semiconductor industry, already more highly digitalized than many others, has been an early adopter of Industry 4.0 technologies. One example is the SECS/GEM equipment interface protocol, introduced a number of years ago for equipment-to-host data communications in highly automated fabs.
However, significant gaps remain in Industry 4.0 implementations in semiconductor manufacturing. One area that has not typically been included in such efforts is the subfab—but that is beginning to change as fab output soars to meet strong demand for chips.
The subfab consumes more energy and resources than any other part of the production facility, so as output increases manufacturers are scrambling to find better ways to manage energy, water and chemical usage while still maintaining high levels of safety, reducing emissions and minimizing costs.
Read more here.
Disaggregation and the wind-down of Moore’s Law have changed everything.
Different interconnect standards and packaging options being readied for mass chiplet adoption.
Continued expansion in new and existing markets points to massive and sustained growth.
Aging equipment and rising demand are pushing up prices and slowing production.
Experts at the Table: Designing for context, and geopolitical impacts on a global supply chain.
Interest in this particular ISA is expanding, but the growth of other open-source hardware is less certain.
Nanosheets are likeliest option throughout this decade, with CFETs and other exotic structures possible after that.
Hybrid bonding opens up whole new level of performance in packaging, but it’s not the only improvement.
Why this is becoming a bigger issue, and what can be done to mitigate the effects.
Some 300mm tools are converted to 200mm; equipment prices and chip manufacturing costs are rising.
From low resistance vias to buried power rails, it takes multiple strategies to usher in 2nm chips.
Manufacturing 3D structures will require atomic-level control of what’s removed and what stays on a wafer.
Disaggregation and the wind-down of Moore’s Law have changed everything.
Leave a Reply