Eliminating Interfacial Delamination in High-Power Automotive Devices


Highly reliable power devices are always demanded by the automotive industry, especially with the surge in electric vehicle (EV) sales. These devices are expected to withstand harsh conditions and, at the same time, deliver consistent performances. Interfacial delamination is a significant factor that can impact the reliability performance of power devices. It refers to the separation of lay... » read more

The Rise Of Thin Wafer Processing


The shift from planar SoCs to 3D-ICs and advanced packages requires much thinner wafers in order to improve performance and reduce power, reducing the distance that signals need to travel and the amount of energy needed to drive them. Markets calling for ultrathin wafers are growing. The combined thickness of an HBM module with 12 DRAM dies and a base logic chip is still less than that of a ... » read more

Linear Pluggable Optics Save Energy In Data Centers


Linear pluggable optics (LPO) is garnering more attention as a way to quickly and efficiently move data in and out of server racks, but a lack of standards for connecting the optical modules is slowing adoption at a time when there is growing pressure to reduce power in data centers. LPO is the newest of two approaches to solving the power wall problem in data centers. Co-packaged optics (CP... » read more

Energy Saving In Semiconductor Packaging Plating Processes Through Chemical Deflashing Process Optimization


In response to the rising focus on sustainable manufacturing practices and corporate social responsibility, there has been a surge of interest in adopting environmentally friendly and green chemicals for semiconductor manufacturing processes. These alternatives aim to minimize hazards while promoting greater sustainability. Notably, this trend extends to exploring substitutes for conventional c... » read more

Laser Ablation Dicing Revolutionizes Ultra-Thin Wafer Saws Beyond The Capability Of Blade Dicing


The demand for consistently high electrical performance in the power discrete semiconductor market has driven component developers to continuously enhance semiconductor assembly packaging technology through advanced package design and wafer fabrication methods. Among the cost-effective approaches are increasing the die area size and decreasing the die thickness, which minimize electrical resist... » read more

FOPLP Gains Traction in Advanced Semiconductor Packaging


Fan-Out Panel-Level Packaging (FOPLP) for advanced nodes, once hindered by manufacturability and yield challenges, is emerging as a promising solution to meet the industry’s demands for higher integration densities and cost efficiency. Traditionally, FOPLP has been a go-to solution for cost-sensitive applications in consumer electronics, IoT devices, and mid-tier automotive systems. Its ab... » read more

Revolutionizing IC Packaging With High-Density RDL Technology


The demand for high-performance devices, particularly in AI, HPC, and data centers, has surged dramatically in the ever-evolving landscape of integrated circuit technology. This demand has been further accelerated by the COVID-19 pandemic, pushing the boundaries of silicon technology to its limits. Enter Amkor’s S-SWIFT, a packaging solution designed to address these challenges and revolution... » read more

Managing EMI in High-Density Integration


The relentless drive for higher performance and increased functional integration has ushered in new challenges for managing electromagnetic interference (EMI) in densely packed mixed-signal environments. Integrating analog, RF, and digital circuits into a single system-on-chip (SoC) or advanced package requires solutions that reduce system size and improve performance. However, this tight in... » read more

Electromigration Concerns Grow In Advanced Packages


The incessant demand for more speed in chips requires forcing more energy through ever-smaller devices, increasing current density and threatening long-term chip reliability. While this problem is well understood, it's becoming more difficult to contain in leading-edge designs. Of particular concern is electromigration, which is becoming more troublesome in advanced packages with multiple ch... » read more

Silicon Photonics Manufacturing Ramps Up


Circuit scaling is starting to hit a wall as the laws of physics clash with exponential increases in the volume of data, forcing chipmakers to take a much closer look at silicon photonics as a way of moving data from where it is collected to where it is processed and stored. The laws of physics are immutable. Put simply, there are limits to how fast an electron can travel through copper. The... » read more

← Older posts