Week in Review: IoT, Security, Auto


Internet of Things Automotive, health care, manufacturing, and the public sector could be transformed this year by Internet of Things technology, Bob Violino writes. Taqee Khaled, director of strategy at Nerdery, a digital business consultancy, predicts 2019 will see rapid evolution in enterprise IoT pilot initiatives and implementations. "This acceleration is due, in part, to advances in manu... » read more

Power/Performance Bits: Jan. 2


High-temp electronics Researchers at Purdue University, UC Santa Cruz, and Stanford developed a semiconducting plastic capable of operating at extreme temperatures. The new material, which combines both a semiconducting organic polymer and a conventional insulating organic polymer could reliably conduct electricity in up to 220 degrees Celsius (428 F). "One of the plastics transports the ch... » read more

Power/Performance Bits: Dec. 4


Bio-hybrid fungi Researchers at Stevens Institute of Technology combined a white button mushroom, electricity-producing cyanobacteria, and graphene nanoribbons into a power-generating symbiotic system. "In this case, our system - this bionic mushroom - produces electricity," said Manu Mannoor, an assistant professor of mechanical engineering at Stevens. "By integrating cyanobacteria that ca... » read more

Power/Performance Bits: Nov. 13


ML identifies LED material Researchers at the University of Houston created a machine learning algorithm that can predict a material's properties to help find better host material candidates for LED lighting. One recommendation was synthesized and tested. The technique, a support vector machine regression model, was efficient enough to run on a personal computer. It scanned a list of 118,28... » read more

Power/Performance Bits: Nov. 6


Camera for object recognition Researchers from the University of Illinois at Urbana-Champaign developed a new camera that could improve object detection in vehicles. Inspired by the visual system of mantis shrimp, the camera detects the polarization of light and has a dynamic range about 10,000 times higher than today's commercial cameras. "In a recent crash involving a self-driving car, th... » read more

Power/Performance Bits: Oct. 23


Integrated solar battery Researchers at the University of Wisconsin–Madison and King Abdullah University of Science and Technology (KAUST) built a unified solar cell-liquid battery device capable of returning more than 14% of the incoming solar energy as electricity. The device is capable of both converting solar energy to electricity for immediate use or storing it as chemical energy in ... » read more

Power/Performance Bits: Oct. 9


Spray-on antenna Engineers at Drexel University developed a sprayable form of the 2D material MXene that can be used to create antennas on nearly any surface. The antennas perform as well or better than the ones currently used in mobile devices and RFID tags. The MXene titanium carbide can be dissolved in water to create an ink or paint. The exceptional conductivity of the material enables ... » read more

Power/Performance Bits: Oct. 2


Photonic sensor Researchers at Washington University in St. Louis devised a way to record environmental data using a wireless photonic sensor resonator with a whispering-gallery-mode (WGM) architecture capable of resonating at light frequencies and also at vibrational or mechanical frequencies. Optical sensors are not affected by electromagnetic interference, a major benefit in noisy or har... » read more

Power/Performance Bits: Sept. 4


Preventing battery fires Researchers from Oak Ridge National Laboratory and the University of Rochester developed a method to prevent lithium-ion batteries from catching on fire when damaged. "In a lithium-ion battery, a thin piece of plastic separates the two electrodes," said Gabriel Veith, a research lead at ORNL. "If the battery is damaged and the plastic layer fails, the electrodes can... » read more

Power/Performance Bits: Aug. 28


Multilayer stretchable electronics Researchers at UC San Diego, the University of Electronic Science and Technology of China, and the Air Force Research Laboratory developed an approach to creating stacked, stretchable electronics with complex functionality. "Rigid electronics can offer a lot of functionality on a small footprint--they can easily be manufactured with as many as 50 layers of... » read more

← Older posts Newer posts →