Precise Control Needed For Copper Plating And CMP


Chipmakers are relying on machine learning for electroplating and wafer cleaning at leading-edge process nodes, augmenting traditional fault detection/classification and statistical process control in order to extend the usefulness of copper interconnects. Copper is well understood and easy to work with, but it is running out of steam. At 5nm and below, copper plating tools are struggling to... » read more

Predicting And Preventing Process Drift


Increasingly tight tolerances and rigorous demands for quality are forcing chipmakers and equipment manufacturers to ferret out minor process variances, which can create significant anomalies in device behavior and render a device non-functional. In the past, many of these variances were ignored. But for a growing number of applications, that's no longer possible. Even minor fluctuations in ... » read more

Pressure Builds On Failure Analysis Labs


Failure analysis labs are becoming more fab-like, offering higher accuracy in locating failures and accelerating time-to-market of new devices. These labs historically have been used for deconstructing devices that failed during field use, known as return material authorizations (RMAs), but their role is expanding. They now are becoming instrumental in achieving first silicon and ramping yie... » read more

Smart Manufacturing Makes Gains In Chip Industry


Lights out manufacturing is gaining steam across the semiconductor industry, accelerating productivity, improving quality, and reducing costs and environment impact. These benefits are the result of years of strategic investments in technologies like machine-to-machine communication, data analytics, and robotics to achieve higher levels of autonomy. Semiconductor factories have long depen... » read more

Getting Smarter About Tool Maintenance


Chipmakers have begun to shift to predictive maintenance for process tools, but the hefty investment in analytics and engineering efforts means it will take some time for smart maintenance to become a widespread practice. Semiconductor manufacturers need to maintain a diverse set of equipment to process the flow of wafers, dies, packaged parts, and boards running through factories. OSAT and ... » read more

Big Payback For Combining Different Types Of Fab Data


Collecting and combining diverse data types from different manufacturing processes can play a significant role in improving semiconductor yield, quality, and reliability, but making that happen requires integrating deep domain expertise from various different process steps and sifting through huge volumes of data scattered across a global supply chain. The semiconductor manufacturing IC data... » read more