Will Floating Point 8 Solve AI/ML Overhead?


While the media buzzes about the Turing Test-busting results of ChatGPT, engineers are focused on the hardware challenges of running large language models and other deep learning networks. High on the ML punch list is how to run models more efficiently using less power, especially in critical applications like self-driving vehicles where latency becomes a matter of life or death. AI already ... » read more

Convolutional Neural Network With INT4 Optimization


Xilinx provides an INT8 AI inference accelerator on Xilinx hardware platforms — Deep Learning Processor Unit (XDPU). However, in some resource-limited, high-performance and low-latency scenarios (such as the resource-power-sensitive edge side and low-latency ADAS scenario), low bit quantization of neural networks is required to achieve lower power consumption and higher performance than provi... » read more