Solving Fan-Out Wafer-Level Warpage Challenges Using Material Science


Now more than ever we’re finding that semiconductor process engineers are turning to material scientists to help find solutions for their most complex challenges. Currently, they are looking for ways to improve fan-out wafer-level packaging (FOWLP), one of today’s hottest technologies for heterogeneous integration. Often, with these new advanced solutions come challenges that can impact ... » read more

The Materials Side Of AI


As we enter the foundry 7nm and below technology nodes, tungsten fill for contacts has reached the physical limits of scaling and copper used in the lowest level interconnects is facing challenges on multiple fronts. Solving these issues will require a new conducting material, namely cobalt. This transition can enable continued device scaling and less power consumption per computation. Follo... » read more

The Next Generation Of Fingerprinting Technology


We used to think of fingerprinting as simply placing your finger on an ink pad and then rolling it on paper to obtain an identifiable mark that would distinguish you from everyone else on the planet. In today’s world, fingerprinting has evolved to take on another, broader definition. According to dictionary.com, fingerprinting can also mean “any unique or distinctive pattern that presents u... » read more

The Role Of Cobalt In Enabling AI


We are on the cusp of the biggest computing wave yet — the AI era driven by Big Data. Enabling this era will require significant enhancements in processor performance and in the capacity and latency of memory. These requirements are coming at a time when the industry is being increasingly challenged by a slowdown in classic Moore’s Law scaling. What’s needed to continue driving the indust... » read more

Defect Reduction At 7/5nm


Darin Collins, director of metrology at Brewer Science, talks about the cause of defects at advanced nodes and how material purity increasingly plays a role in overall quality and yield. » read more

Blog Review: July 4


Applied Materials' Sundeep Bajikar argues that to get the full benefits of AI, new computing architectures are needed – and that will require new breakthroughs in materials engineering to get beyond classic 2D scaling. Cadence's Tom Wong considers to what extent chip dis-integration is happening and how the industry can cope with the escalating costs of new process nodes and higher-speed i... » read more

Surface Modification: Solving Semiconductor Manufacturing Challenges


Process reliability and faster technology deployment are two of the most pressing manufacturing challenges currently facing the semiconductor industry. In a world of ever-evolving technology and innovation, engineers are working to transform materials that don’t possess all the desired functions through a method called “surface modification” – the act of modifying a material’s surface... » read more

Silicon’s Long Game


The era of all-silicon substrates and copper wires may be coming to an end. Progress in the future increasingly depends on more exotic combinations of materials that are developed for specific applications. But after years of predicting the death of silicon, it appears those predictions may be premature. That's not always obvious, given the growing number of chemical combinations being creat... » read more

The Materials Gap


When consolidation thinned the ranks of semiconductor foundries and equipment makers, materials companies figured things were about to get better. They haven't. There are a couple of reasons for this. First, semiconductors are now so complex and difficult to develop that a slew of innovations are required on all sides. Everyone is familiar with transistor structures, interconnects and lithog... » read more

Can A Supply Chain Be Too Efficient?


The semiconductor industry is a model of efficiency—literally. When other industries look at adding smart manufacturing into their operations, they often look to chip manufacturing as a shining example. After decades of business gyrations, semiconductor companies have figured out how to instill efficiency into every aspect of making chips. This is evident in device scaling. At 90nm, the co... » read more

← Older posts