Scalable Platforms For Evolving AI


Wear and tear on big, heavy vehicles such as trains can cause unexpected delays and repairs, not to mention create safety hazards that can go unnoticed for months until they become critical. In the past, maintenance teams personally examined the undercarriage of a locomotive to look for stress cracks and other anomalies. Later, imaging and sonar technologies were introduced to find what the hum... » read more

Making Sense Of ML Metrics


Steve Roddy, vice president of products for Arm’s Machine Learning Group, talks with Semiconductor Engineering about what different metrics actually mean, and why they can vary by individual applications and use cases. » read more

Machine Learning Inferencing At The Edge


Ian Bratt, fellow in Arm's machine learning group, talks about why machine learning inferencing at the edge is so difficult, what are the tradeoffs, how to optimize data movement, how to accelerate that movement, and how it differs from developing other types of processors. » read more

What’s Powering Artificial Intelligence?


While artificial intelligence (AI) and machine learning (ML) applications soar in popularity, many organizations are questioning where ML workloads should be performed. Should they be done on a central processor (CPU), a graphics processor (GPU), or a neural processor (NPU)? The choice most teams are making today will surprise you. To scale artificial intelligence (AI) and machine learning (... » read more

AI Market Ramps Everywhere


Artificial Intelligence (AI) has inspired the general populace, but its rapid rise over the past few years has given many people pause. From realistic concerns about robots taking over jobs to sci-fi scares about robots more intelligent than humans building ever smarter robots themselves, AI inspires plenty of angst. Within the technology industry, we have a better understanding about the pote... » read more

Machine Learning Shifts More Work to FPGAs, SoCs


A wave of machine-learning-optimized chips is expected to begin shipping in the next few months, but it will take time before data centers decide whether these new accelerators are worth adopting and whether they actually live up to claims of big gains in performance. There are numerous reports that silicon custom-designed for machine learning will deliver 100X the performance of current opt... » read more

Newer posts →