Memory and Energy-Efficient Batch Normalization Hardware


A new technical paper titled "LightNorm: Area and Energy-Efficient Batch Normalization Hardware for On-Device DNN Training" was published by researchers at DGIST (Daegu Gyeongbuk Institute of Science and Technology). The work was supported by Samsung Research Funding Incubation Center. Abstract: "When training early-stage deep neural networks (DNNs), generating intermediate features via con... » read more

Training a ML model On An Intelligent Edge Device Using Less Than 256KB Memory


A new technical paper titled "On-Device Training Under 256KB Memory" was published by researchers at MIT and MIT-IBM Watson AI Lab. “Our study enables IoT devices to not only perform inference but also continuously update the AI models to newly collected data, paving the way for lifelong on-device learning. The low resource utilization makes deep learning more accessible and can have a bro... » read more