中文 English

Toward Software-Equivalent Accuracy on Transformer-Based Deep Neural Networks With Analog Memory Devices


Abstract: Recent advances in deep learning have been driven by ever-increasing model sizes, with networks growing to millions or even billions of parameters. Such enormous models call for fast and energy-efficient hardware accelerators. We study the potential of Analog AI accelerators based on Non-Volatile Memory, in particular Phase Change Memory (PCM), for software-equivalent accurate infe... » read more

There’s More To Machine Learning Than CNNs


Neural networks – and convolutional neural networks (CNNs) in particular – have received an abundance of attention over the last few years, but they're not the only useful machine-learning structures. There are numerous other ways for machines to learn how to solve problems, and there is room for alternative machine-learning structures. “Neural networks can do all this really comple... » read more