The semiconductor IP (SIP) market arose when SIP vendors created IP functions that mirrored those found in the discrete semiconductor market and made those functions available to SoC designers in the form of hard or soft SIP blocks. As the SoC and SIP markets evolved, it was a natural evolution that many discrete SIP functions be converged into larger blocks that mimic system-level functions (i.e. subsystems). This whitepaper discusses how the use IP subsystems to reduce the level of effort designers must expend to create highly complex SoC designs will represent the future of the SoC development in the semiconductor industry.
Increasing complexity, disaggregation, and continued feature shrinks add to problem; oversight is scant.
Academia, industry partnerships ramp to entice undergrads into hardware engineering.
Packaging and inspection companies draw funding; 124 startups raise over $2.3 billion.
Pitches continue to decrease, but new tooling and technologies are required.
Buried features and re-entrant geometries drive application-specific metrology solutions.
Existing tools can be used for RISC-V, but they may not be the most effective or efficient. What else is needed?
The industry is gaining ground in understanding how aging affects reliability, but more variables make it harder to fix.
Technical and business challenges persist, but momentum is building.
Gate-all-around is set to replace finFET, but it brings its own set of challenges and unknowns.
The verification of a processor is a lot more complex than a comparably-sized ASIC, and RISC-V processors take this to another layer of complexity.
Academia, industry partnerships ramp to entice undergrads into hardware engineering.
The industry seems to think it is a real goal for the open instruction set architecture.
High speed and low heat make this technology essential, but it’s extremely complex and talent is hard to find and train.
Leave a Reply