Power Budgets At 3nm And Beyond


There is high confidence that digital logic will continue to shrink at least to 3nm, and possibly down to 1.5nm. Each of those will require significant changes in how design teams approach power. This is somewhat evolutionary for most chipmakers. Five years ago there were fewer than a handful of power experts in most large organizations. Today, everyone deals with power in one way or another... » read more

IC Test: Doing It At The Right Place At The Right Time


In the real world, we are slaves to our environment. The decisions we make are dependent on the resources available at any given time. In school, I remember coming up with a binary decision diagram (BDD) variable-ordering algorithm that relied on partial BDDs. Was that the best algorithm to determine the variable ordering of a BDD for a design? Probably not. However, it was easy to do as a coll... » read more

Trends In FPGA Verification Effort And Adoption: The 2018 Wilson Research Group Functional Verification Study


As contributors and pioneers in the digital revolution, we are often so busy creating and innovating that we are compelled to focus on the trees, never mind the forest. But as we are all aware, the more we know about the bigger picture, context, historical and projected trends, or simply how other people are doing the same thing, the more efficiently and successfully we can do our jobs. Prov... » read more

The Importance Of Using The Right DDR SDRAM Memory


Selecting the right memory technology is often the most critical decision for achieving the optimal system performance. Designers continue to add more cores and functionality to their SoCs; however, increasing performance while keeping power consumption low and silicon footprint small remains a vital goal. DDR SDRAMs, DRAMs in short, meet these memory requirements by offering a dense, high-perf... » read more

GDDR6: Signal Integrity Challenges For Automotive Systems


Signal integrity (SI) is at the forefront of SoC and system designers’ thinking as they plan for upcoming high-speed GDDR6 DRAM and PHY implementations for automotive and advanced driver assistance system (ADAS) applications. Rambus and its partners are closely looking at how GDDR6’s 16 gigabit per second speed at each pin affects signal integrity given the cost and system constraints for a... » read more

Arms Race In Chip Performance


An AI arms race is taking shape across continents. While this is perilous on many fronts, it could provide a massive boost for the chip technology—and help to solve a long-simmering problem in computing, as well as lots of lesser ones. The U.S. government this week announced its AI Initiative, joining an international scramble for the fastest way to do multiply/accumulate and come up with ... » read more

The Promise Of GDDR6 And 7nm


Research Nester, a market research and consulting firm, estimates that the “global market of computer graphics may witness a remarkable growth and reach at the valuation of $215.5 billion by the end of year 2024.” Plus, it says this market is expected to grow at a significant compound annual growth rate or CAGR of 6.1% over the forecast period 2017 to 2024. Computer graphics is just the ... » read more

Getting Ready for 32 GT/s PCIe 5.0 Designs


The transition from older PCI Express (PCIe) technologies to the latest Revision 5.0 is on an accelerated path, with system-on-chip (SoC) designers seeing a much faster roll out than they did with PCIe 4.0. The recent release of version 0.9 of the PCIe 5.0 Base Specification locks in the functional changes to the specification, allowing designers to confidently start their designs. With the rap... » read more

Automated Analog Design Constraint Checking


By Hossam Sarhan and Alexandre Arriordaz Overview Analog integrated circuits (ICs) are used to control and regulate conditions such as temperature, speed, sound, and electrical current. In analog ICs, voltage and current vary continuously at specified points in the circuit. One of the biggest challenges in analog integrated circuit (IC) design is to achieve and maintain accurate ratios: cap... » read more

How To Reduce Thermal Guard-Banding


Accuracy in temperature sensors can have a big impact in designs from 40nm down to 7nm and beyond, reducing the amount of guard-banding that is required, which in turn can lower the power and extend the life and reliability of components. But at these process geometries, not all sensors measure temperature equally. Thermal guard-banding is a very important consideration for design teams, and... » read more

← Older posts