TCAD Simulation Challenges For Gate-All-Around Transistors


By Victor Moroz and Shela Aboud The transition from finFET technology to Gate-All-Around (GAA) technology helps to reduce transistor variability and resume channel length scaling. It also brings several new challenges in terms of transistor design that need to be addressed. One of the challenges is handling the thin Si layers that come with GAA technology, where Si channel thickness scale... » read more

Tuning Design And Process For High-NA EUV Stitching


By Kevin Lucas and James Ban Upcoming 14A and 10A process nodes will use high-NA EUV anamorphic scanners, which will require two stitched half-fields to achieve the equivalent wafer exposure area of previous-generation scanners, see figure 1. The lithography patterning at a stitching boundary between two mask exposures will be affected by additional process variation than are encountered in ... » read more

Bringing Curvilinear Data To Mask Data Prep


Advanced nodes that have been leveraging curvilinear correction with technologies such as ILT and curvilinear OPC are increasingly requiring the use of curvilinear masks to meet advanced feature size and pitch requirements. However, building curvilinear masks with standard OASIS file formats can come at the cost of large file sizes, increased turnaround time, and reduced quality of results. The... » read more

Metrology Analysis Tool For Photolithography Process Characterization At Advanced Nodes


Continued scaling of integrated circuits to smaller dimensions is still a viable way to increase compute power, achieve higher memory cell density, or reduce power consumption. These days, chip makers are using single-digit nanometer figures or even Angstrom to label their manufacturing technology nodes, which are associated with the size of features patterned during the lithography process. ... » read more

Applying Machine Learning To Accelerate TCAD Calibration


TCAD models are the fundamental building blocks for the semiconductor industry. Whether it is a new process node or a new multi-billion dollar fab, accurate TCAD models must be developed and calibrated before they can be deployed in technology development. While TCAD models have been around for (many) decades, their complexity is growing exponentially, as is the demands placed on the R&D en... » read more

Accelerating Innovation With An E-Beam Lithography System


By Al Blais and Johnny Yeap Traditional lithography remains a standard in the industry, providing precision and a relatively cost-effective way to create patterns on the wafer when producing very high volumes of chips. However, cycle times can be long depending on the complexity of the masks that must be made. The emergence of maskless e-beam lithography is providing a complementary path ... » read more

Enabling New Applications With SiC IGBT And GaN HEMT For Power Module Design


The need to mitigate climate change is driving a need to electrify our infrastructure, vehicles, and appliances, which can then be charged and powered by renewable energy sources. The most visible and impactful electrification is now under way for electric vehicles (EVs). Beyond the transition to electric engines, several new features and technologies are driving the electrification of vehicles... » read more

The High NA EUV Imperative: How Computational Lithography Solutions Enable Us To Think Smaller


The future of computing depends on miniaturization, and extreme ultraviolet lithography (EUV) is one key enabler. Until recently, we have relied on low numerical aperture (NA) EUV systems with an aperture of 0.33 to help us reduce the size of integrated circuits (ICs). As with deep ultraviolet (DUV) technology, this has begun to reach its limits. High NA EUV lithography with a 0.55 aperture rep... » read more

Utilizing Artificial Intelligence For Efficient Semiconductor Manufacturing


The challenges before semiconductor fabs are expansive and evolving. As the size of chips shrinks from nanometers to eventually angstroms, the complexity of the manufacturing process increases in response. It can take hundreds of process steps and more than a month to process a single wafer. It can subsequently take more than another month to go through the assembly, testing, and packaging st... » read more

Using TCAD To Simulate Wide-Bandgap Materials For Electronics Design


Wide-bandgap (WBG) semiconductors are a class of materials that can offer a range of advantages over silicon. These materials can operate at higher voltages and higher temperatures, serving as critical enablers of innovation in Power and RF applications and functioning in a wider range of environments that are sometimes extreme. Electronics applications benefit from these wide-bandgap materials... » read more

← Older posts