Creating Airgaps To Reduce Parasitic Capacitance In FEOL


Reducing the parasitic capacitance between the gate metal and the source/drain contact of a transistor can decrease device switching delays. One way to reduce parasitic capacitance is to reduce the effective dielectric constant of the material layers between the gate and source/drain. This can be done by creating airgaps in the dielectric material at that location. This type of work has been do... » read more

Insights Into Advanced DRAM Capacitor Patterning: Process Window Evaluation Using Virtual Fabrication


With continuous device scaling, process windows have become narrower and narrower due to smaller feature sizes and greater process step variability [1]. A key task during the R&D stage of semiconductor development is to choose a good integration scheme with a relatively large process window. When wafer test data is limited, evaluating the process window for different integration schemes can... » read more

How Does Line Edge Roughness (LER) Affect Semiconductor Performance At Advanced Nodes?


BEOL metal line RC delay has become a dominant factor that limits chip performance at advanced nodes [1]. Smaller metal line pitches require a narrower line CD and line to line spacing, which introduces higher metal line resistance and line to line capacitance. This is demonstrated in figure 1, which displays a simulation of line resistance vs. line CD across different BEOL metals. Even without... » read more

3D NAND Virtual Process Troubleshooting And Investigation


Modern semiconductor processes are extremely complicated and involve thousands of interacting individual process steps. During the development of these process steps, roadblocks and barriers are often encountered in the form of unanticipated negative interactions between upstream and downstream process modules. These barriers can create a long delay in the development cycle and increase costs. ... » read more

Quantum Computers And CMOS Semiconductors: A Review And Future Predictions


With the advent of quantum computing, the need for peripheral fault-tolerant logic control circuitry has reached new heights. In classical computation, the unit of information is a “1” or “0”. In quantum computers, the unit of information is a qubit which can be characterized as a “0”, “1”, or a superposition of both values (known as a “superimposed state”). The control c... » read more

There Is Plenty Of Room At The Top: Imagining Miniaturized Electro-Mechanical Switches In Low-Power Computing Applications


The first computers were built using electro-mechanical components, unlike today’s modern electronic systems. Alan Turing’s cryptanalysis multiplier and Konrad Zuse’s Z2 were invented and built in the first half of the 20th century, and were among the first computers ever constructed. Electro-mechanical switches and relays performed logic operations in these machines. Even after computers... » read more

BEOL Integration For The 1.5nm Node And Beyond


As we approach the 1.5nm node and beyond, new BEOL device integration challenges will be presented. These challenges include the need for smaller metal pitches, along with support for new process flows. Process modifications to improve RC performance, reduce edge placement error, and enable challenging manufacturing processes will all be required. To address these challenges, we investigated th... » read more

Accelerating Semiconductor Process Development Using Virtual Design Of Experiments


Design of Experiments (DOE) are a powerful concept in semiconductor engineering research and development. DOEs are sets of experiments used to explore the sensitivity of experimental variables and their effect on final device performance. A well-designed DOE can help an engineer achieve a targeted semiconductor device performance using a limited number of experimental wafer runs. However, in se... » read more

The Effect Of Pattern Loading On BEOL Yield And Reliability During Chemical Mechanical Planarization


Chemical mechanical planarization (CMP) is required during semiconductor processing of many memory and logic devices. CMP is used to create planar surfaces and achieve uniform layer thickness during semiconductor manufacturing, and to optimize the device topology prior to the next processing step. Unfortunately, the surface of a semiconductor device is not uniform after CMP, due to different re... » read more

Understanding Electrical Line Resistance At Advanced Semiconductor Nodes


When evaluating shrinking metal linewidths in advanced semiconductor devices, bulk resistivity is not the sole materials property for deriving electrical resistance. At smaller line dimensions, local resistivity is dominated by grain boundary effects and surface scattering. Consequently, resistivity varies throughout a line, and resistance extraction needs to account for these secondary phenome... » read more

← Older posts Newer posts →