Manufacturing Bits: Dec. 28


Measuring microdroplets The National Institute of Standards and Technology (NIST) has found a new way for microscopes to measure the volumes of microdroplets. Using this technique, NIST has measured the volume of individual droplets smaller than 100 trillionths of a liter with an uncertainty of less than 1%. That represents a tenfold improvement compared to previous measurements, according ... » read more

Power/Performance Bits: Dec. 28


Shrinking LEDs Researchers from King Abdullah University of Science and Technology (KAUST) are working to make LEDs smaller. Micrometer-scale light-emitting diodes (μLEDs) could be an ideal building block for future microLED displays, but devices based on nitride-based alloys used to achieve a broad color range become poor emitters of light when shrunk to micrometer scales. “The main ... » read more

Manufacturing Bits: Dec. 21


Tiny electronic fountain pens Karlsruhe Institute of Technology (KIT) and Taiyuan University of Technology have developed what resembles a tiny electronic fountain pen, a technology that can pattern and deposit small structures on surfaces. The system from KIT and Taiyuan University is actually a high-precision tabletop microplotter, which is used to print or deposit materials for printed e... » read more

Power/Performance Bits: Dec. 21


Compact optical amplifier Researchers at Chalmers University of Technology propose a new optical amplifier design that is compact, high-performance, and doesn't generate excess noise. “We have developed the world's first optical amplifier that significantly enhances the range, sensitivity and performance of optical communication, that does not generate any excess noise – and is also com... » read more

Manufacturing Bits: Dec. 14


3D-SOCs At this week’s IEEE International Electron Devices Meeting (IEDM), a plethora of companies, R&D organizations and universities presented papers on the latest and greatest technologies. One of the themes at IEDM is advanced packaging, a technology enables an IC vendor to boost the performance of a chip. Advanced forms of packaging also enables new 3D-like chip architectures. Fo... » read more

Power/Performance Bits: Dec. 14


Improved digital sensing Researchers from Imperial College London and Technical University of Munich propose a technique to improve the capability of many different types of sensors. The method addresses voltage limits in analog-to-digital converters and the saturation that results in poor quality when an incoming signal exceeds those limits. “Our new technique lets us capture a fuller ra... » read more

Manufacturing Bits: Dec. 6


China’s rare earth power play Rare earth elements (REEs) are back in the news. China, the world’s largest supplier of rare earths, plans to combine three domestic vendors to create a large state-owned company with a nearly 70% share of the REE market, according to reports from Nikkei and others. In 2020, China in total accounted for 85% of global production of refined REEs, accordi... » read more

Power/Performance Bits: Dec. 6


Tunable 2D semiconductors Researchers from the Singapore University of Technology and Design (SUTD), Hengyang Normal University, Nanjing University, National University of Singapore, and Zhejiang University identified a family of 2D semiconductors that could have lower resistance and enable further scaling. “Due to the quantum tunnelling effect, shrinking a silicon-based transistor too sm... » read more

Manufacturing Bits: Nov. 30


Quantum chemistry QunaSys has launched a technology that enables researchers to perform chemical calculations using quantum computers in the cloud. The company has announced the launch of the cloud version of Qamuy, which is supported by Amazon Web Services Japan. Qamuy is a software technology that allows researchers to perform chemical calculations using quantum computers. Developers c... » read more

Power/Performance Bits: Nov. 30


Universal decoding algorithm Researchers at MIT, Boston University, and Maynooth University built a silicon chip that is able to decode any error-correcting code, regardless of its structure, with maximum accuracy, using a universal decoding algorithm called Guessing Random Additive Noise Decoding (GRAND). Encoded data traveling over a network is susceptible to noise, which disrupts the sig... » read more

← Older posts Newer posts →