Manufacturing Bits: April 6


Powerful electromagnets The National High Magnetic Field Laboratory (MagLab) has tested a new and powerful superconducting solenoid or electromagnet that operates at high currents. MagLab develops several different types of large and powerful magnets, which are used as scientific instruments. MagLab’s solenoid or electromagnet could one day be used to drive particle accelerators and compa... » read more

Power/Performance Bits: April 6


Durian supercapacitors Researchers from the University of Sydney developed a method that uses durian and jackfruit waste to create supercapacitors. Supercapacitors are capable of quickly storing and discharging energy. The team says their fruit-based material is more efficient than ones typically made from activated carbon. "Using durian and jackfruit purchased from a market, we conver... » read more

Manufacturing Bits: March 31


Whiskey webs The production and sale of counterfeit wine and spirits is becoming a big and nefarious business. Using time-lapse microscopy, researchers have developed a way to detect counterfeit whiskey. To detect counterfeit whiskey, the University of Louisville and North Carolina State University have uncovered the mechanism behind what researchers call “whiskey webs.” Whiskey webs... » read more

Power/Performance Bits: March 31


Tellurium transistors Researchers from Purdue University, Washington University in St Louis, University of Texas at Dallas, and Michigan Technological University propose the rare earth element tellurium as a potential material for ultra-small transistors. Encapsulated in a nanotube made of boron nitride, tellurium helps build a field-effect transistor with a diameter of two nanometers. �... » read more

Manufacturing Bits: March 24


Autonomous microscopes FLEET, also known as the ARC Centre of Excellence in Future Low-Energy Electronics Technologies, has developed an autonomous scanning probe microscopy (SPM) technology. SPM is an instrument that makes use of an atomically sharp probe. The probe is placed in close proximity above the surface of a sample. With the probe, the SPM forms images of the surface of the sample... » read more

Power/Performance Bits: March 24


Backscatter Wi-Fi radio Engineers at the University of California San Diego developed an ultra-low power Wi-Fi radio they say could enable portable IoT devices. Using 5,000 times less power than standard Wi-Fi radios, the device consumes 28 microwatts while transmitting data at a rate of 2 megabits per second over a range of up to 21 meters. "You can connect your phone, your smart devices, ... » read more

Manufacturing Bits: March 17


Making MXenes Drexel University and the Materials Research Center in the Ukraine have devised a system for use in making large quantities of MXenes, a promising set of materials used for energy storage and related applications. A class of two-dimensional inorganic compounds, MXenes consist of thin atomic layers. The materials are based on transition metal carbides, nitrides or carbonitrides... » read more

Power/Performance Bits: March 17


MRAM speed Researchers at ETH Zurich and Imec investigated exactly how quickly magnetoresistive RAM (MRAM) can store data. In the team's MRAM, electrons with opposite spin directions are spatially separated by the spin-orbit interaction, creating an effective magnetic field that can be used to invert the direction of magnetization of a tiny metal dot. "We know from earlier experiments, i... » read more

Manufacturing Bits: March 9


Finding cures for coronavirus The Department of Energy’s Oak Ridge National Laboratory (ORNL) is using the world’s most powerful supercomputer to identify drug compounds and cures for the coronavirus. [caption id="attachment_24162601" align="alignleft" width="300"] Summit supercomputer. Source: Oak Ridge National Laboratory[/caption] The supercomputer, called Summit, has identified 7... » read more

Power/Performance Bits: March 9


Healing perovskites Researchers at Brown University found that while perovskite solar cells can crack easily, they are also capable of healing those cracks. "The efficiency of perovskite solar cells has grown very quickly and now rivals silicon in laboratory cells," said Nitin Padture, a professor in Brown's School of Engineering and director of Brown's Institute for Molecular and Nanoscale... » read more

← Older posts Newer posts →