System Bits: May 3


Neural network synapses In a development that could potentially be used as a basis for the hardware implementation of artificial neural networks, Moscow Institute of Physics and Technology (MIPT) researchers have created prototypes of electronic synapses based on ultra-thin films of hafnium oxide (HfO2). The team made the HfO2-based memristors measuring just 40x40 nm2, which exhibit propert... » read more

System Bits: April 26


Reconfigured Tesla coil electrifies materials In a development that could set a clear path toward scalable assembly of nanotubes from the bottom up, Rice University researchers have discovered that the strong force field emitted by a Tesla coil causes carbon nanotubes to self-assemble into long wires, a phenomenon they call Teslaphoresis. Rice chemist Paul Cherukuri led the team that develo... » read more

System Bits: April 19


Debugging web apps MIT researchers reported that they’ve developed a system that can quickly comb through tens of thousands of lines of application code to find security flaws by exploiting some peculiarities of the Ruby on Rails web programming framework. The team said that in tests on 50 popular web applications written using Ruby on Rails, the system found 23 previously undiagnosed sec... » read more

System Bits: April 12


Highly aligned, wafer-scale films Rice University researchers, with support from Los Alamos National Laboratory, have created inch-wide, flexible, wafer-scale films of highly aligned and closely packed carbon nanotubes with the help of a simple filtration process. The chirality-enriched single-walled carbon nanotubes assemble themselves by the millions into long rows that are aligned better... » read more

System Bits: April 5


Encoding electrons with valleytronics Researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a new type of electronics that could lead to faster and more efficient computer logic systems and data storage chips in next-generation devices that they refer to as “valleytronics.” Specifically, the team has experimentally demonstra... » read more

System Bits: March 29


Cryptographic system for controlling app access to data Researchers at MIT and Harvard University are hoping to change the fact that users of smartphones have no idea which data items their apps are collecting, where they’re stored, and if they’re stored securely with an application they’ve developed called Sieve. With Sieve, a Web user would store all personal data, in encrypted form... » read more

System Bits: March 22


How nanocrystal structures self assemble Researchers at MIT and the Cornell High Energy Synchrotron Source (CHESS) have discovered some of the secrets to a long-hidden magic trick behind the self-assembly of nanocrystal structures, the understanding of which could be used to create more vivid display screens and optical sensory devices. The transformation of simple colloidal particles — b... » read more

System Bits: March 15


Drilling into metabolic details with big data In a development that may help researchers find new therapeutic targets for cancer and other diseases, Rice University researchers have created a fast computational method to model tissue-specific metabolic pathways. The team explained that metabolic pathways are immense networks of biochemical reactions that keep organisms functioning and are a... » read more

System Bits: March 8


Living, breathing supercomputers Adenosine triphosphate (ATP), the substance that provides energy to all the cells in the human body, may also be able to power the next generation of supercomputers, according to McGill University researchers. The team has described a model of a biological computer that they have created that is able to process information very quickly and accurately using p... » read more

System Bits: March 1


Current generation silicon wafer While the single-crystal silicon wafer changed the nature of communication 60 years ago, a group of Cornell researchers is now hoping its work with quantum dot solids can usher in a new era in electronics. In what could be the first step toward discovering and developing artificial materials with controllable electronic structure, the team has fashioned 2D s... » read more

← Older posts Newer posts →