Under certain specialized conditions, electrons can speed through a narrow opening in a piece of metal more easily than traditional theory says is possible
Source:
Massachusetts Institute of Technology, Weizmann Institute of Science, Rehovot Israel
Haoyu Guo, Ekin Ilseven, Gregory Falkovich, Leonid Levitov
“A new finding by physicists at MIT and in Israel shows that under certain specialized conditions, electrons can speed through a narrow opening in a piece of metal more easily than traditional theory says is possible.
This “superballistic” flow resembles the behavior of gases flowing through a constricted opening, however it takes place in a quantum-mechanical electron fluid, says MIT physics professor Leonid Levitov, who is the senior author of a paper describing the finding that appears this week in the Proceedings of the National Academy of Sciences.
In these constricted passageways, whether for gases passing through a tube or electrons moving through a section of metal that narrows to a point, it turns out that the more, the merrier: Big bunches of gas molecules, or big bunches of electrons, move faster than smaller numbers passing through the same bottleneck.” (Source: MIT News)
Click here for technical paper.
New research shows that electrons passing through a narrow constriction in a piece of metal can move much faster than expected, and that they move faster if there are more of them — a seemingly paradoxical result. In this illustration, the orange surface represents the potential energy needed to get an electron moving, and the “valley” at center represents the constricted portion. (Source: MIT)
Sensor technologies are still evolving, and capabilities are being debated.
Academia, industry partnerships ramp to entice undergrads into hardware engineering.
Pitches continue to decrease, but new tooling and technologies are required.
Buried features and re-entrant geometries drive application-specific metrology solutions.
Issues involving design, manufacturing, packaging, and observability all need to be solved before this approach goes mainstream for many applications.
While terms often are used interchangeably, they are very different technologies with different challenges.
Technology and business issues mean it won’t replace EUV, but photonics, biotech and other markets provide plenty of room for growth.
Commercial chiplet marketplaces are still on the distant horizon, but companies are getting an early start with more limited partnerships.
Existing tools can be used for RISC-V, but they may not be the most effective or efficient. What else is needed?
Sensor technologies are still evolving, and capabilities are being debated.
The industry is gaining ground in understanding how aging affects reliability, but more variables make it harder to fix.
Key pivot and innovation points in semiconductor manufacturing.
Tools become more specific for Si/SiGe stacks, 3D NAND, and bonded wafer pairs.
Leave a Reply