ML-driven capabilities can be embedded in different design engines, giving EDA developers a new arsenal of tools for semiconductor design.
Machine-learning offers opportunities to enable self-optimizing design tools. Very much like self-driving cars that observe real-world interactions to improve their responses in different (local) driving conditions, AI-enhanced tools are able to learn and improve in (local) design environments after deployment.
These new, ML-driven capabilities can be embedded in different design engines, giving EDA developers a new arsenal of solutions for today’s demanding semiconductor design environment. Given the abundance of data and a rich set of heuristics, new classes of ML models can be created using ensemble methods (e.g., linear regression, support vector machines, neural networks) to exploit opportunities throughout the design cycle.
Click here to read more.
100% inspection, more data, and traceability will reduce assembly defects plaguing automotive customer returns.
Engineers are finding ways to effectively thermally dissipate heat from complex modules.
Increased transistor density and utilization are creating memory performance issues.
Lots of unknowns will persist for decades across multiple market segments.
FPGAs, CPUs, and equipment receive funding in China; 98 startups raise over $2 billion.
Suppliers are investing new 300mm capacity, but it’s probably not enough. And despite burgeoning 200mm demand, only Okmetic and new players in China are adding capacity.
100% inspection, more data, and traceability will reduce assembly defects plaguing automotive customer returns.
From low resistance vias to buried power rails, it takes multiple strategies to usher in 2nm chips.
Some of the less common considerations for assessing the suitability of a system for high-performance workloads.
Manufacturing 3D structures will require atomic-level control of what’s removed and what stays on a wafer.
Different interconnect standards and packaging options being readied for mass chiplet adoption.
Engineers are finding ways to effectively thermally dissipate heat from complex modules.
Disaggregation and the wind-down of Moore’s Law have changed everything.
Leave a Reply