Redefining Hearing Aids With DSPs

The future of hearing aids lies in further miniaturization and functionality enhancement.

popularity

Hearing is one of the most essential senses for engaging with the world. It enables us to converse, appreciate music, and remain alert to our surroundings. Hearing loss is a prevalent issue affecting millions of individuals globally and disconnecting them from a world where sound is vital to others and the environment. The World Health Organization (WHO) reports that over 5% of the global population requires hearing rehabilitation, a striking statistic highlighting this issue’s pervasive nature. Technology has transformed audiology, evolving from simple ear trumpets to sophisticated modern hearing aids. This advancement began with the invention of the transistor, paving the way for devices that are fully wearable inside or behind the ear.

Although hearing aids have been available for many years, historically, access to these critical devices has been insufficient, resulting in numerous individuals lacking the necessary support. However, recent advances in hearing aid technology promise improved acoustic experiences, employing modern techniques like binaural processing and neural networks. These innovations demand sophisticated architecture to balance high memory needs with low power consumption in a user-friendly design.

Hearing aids: A testament to human ingenuity

The transition from analog to digital technology in the late 20th century further transformed hearing aids, offering superior sound quality, customization, and the ability to connect to various electronic devices, thus enhancing the user experience markedly. Today’s hearing aids are highly effective, versatile, and nearly invisible, a significant advancement from early attempts to address hearing loss. They also feature advanced noise cancellation and connectivity options, allowing users to integrate seamlessly into the digital world. This progression not only highlights the industry’s commitment to improving user experience and accessibility but also offers a glimpse into a future where hearing loss is no longer a barrier.

Challenges

Despite advancements and sophistication, there are several challenges related to hearing aid design and adoption. Users demand smaller, more discreet devices that don’t sacrifice performance. While the shift towards sleeker designs is aesthetically pleasing, it introduces substantial complexities in product design. Designers face the challenges of integrating essential components, such as batteries and peripherals, into increasingly compact spaces. Power consumption remains a critical concern, as these devices must remain operational throughout the day. Leveraging neural networks to enhance the signal-to-noise ratio (SNR) for better quality demands additional memory capacity.

Consequently, there is a pressing need for flexible, low-power architectures that incorporate all necessary memory and peripherals without compromising the device’s compact size. Adopting AI for adjusting hearing aid volume to fit an individual’s specific auditory requirements is a significant challenge and demands more memory and effort. Besides this, reliability and cost are significant challenges for manufacturers.

Transforming hearing aids

In hearing aid development, the capacity to evaluate the energy efficiency of SoCs across different frequencies in real time is crucial. These applications demand cohesive, energy-efficient solutions that can uphold high performance. The Cadence Tensilica HiFi and Fusion F1 DSP family emphasize minimal power usage while providing robust performance, ideally suited for a wide range of audio and voice applications.

The Cadence Tensilica HiFi DSP family, a high-performance audio technology with AI acceleration and advanced DSP capability, offers feature-rich audio, speech, and imaging for wearables, automotive, home entertainment, digital assistants, and ASR. The Tensilica HiFi DSP family accelerates innovation with its comprehensive instruction set and supports fixed- and floating-point data types. Simplifying software development, it offers C/C++ programming, an auto-vectorizing compiler, and a rich DSP software library through the Cadence Tensilica Xplorer development environment.

Conclusion

Technological advancements are driving hearing aid evolution; the future of hearing aids lies in further miniaturization and functionality enhancement. Cadence’s ongoing innovations aim to improve signal processing and noise reduction, even in challenging environments. The integration of neural networks promises more apparent sound transmission and greater adaptability.

Cadence is working on improving how these devices process signals and reduce noise and has initiated a collaborative venture with distinguished entities like GlobalFoundries (GF), Hoerzentrum Oldenburg gGmbH, and Leibniz University Hannover. This collaboration has borne fruit in the form of the industry’s first binaural hearing aid system-on-chip (SoC) prototype, the Smart Hearing Aid Processor (SmartHeAP).



Leave a Reply


(Note: This name will be displayed publicly)