Research Bits: Apr. 2


Stretchy, sensitive circuits Researchers from Stanford University developed skin-like, stretchable integrated circuits capable of driving a micro-LED screen with a refresh rate of 60 Hz and detecting a braille array that is more sensitive than human fingertips. The stretchable transistors are made from semiconducting carbon nanotubes sandwiched between soft elastic electronic materials. The... » read more

Research Bits: September 11


Combining digital and analog Researchers from École Polytechnique Fédérale de Lausanne (EPFL) propose integrating 2D semiconductors with ferroelectric materials for joint digital and analog information processing, which could improve energy efficiency and support new functionality. The device uses a 2D negative-capacitance tungsten diselenide/tin diselenide tunnel FET (TFET), which consu... » read more

Addressing The Challenge Of Metallization In Highly Integrated (3D) Stretchable Electronics


A technical paper titled “Scalable electrodeposition of liquid metal from an acetonitrile-based electrolyte for highly-integrated stretchable electronics” was published by researchers at KU Leuven. Abstract: "For the advancement of highly-integrated stretchable electronics, the development of scalable sub-micrometer conductor patterning is required. Eutectic gallium indium EGaIn is an att... » read more

Smelling The Metaverse Via Wearable Wireless Interfaces


A new technical paper titled "Soft, miniaturized, wireless olfactory interface for virtual reality" was published by researchers at  City University of Hong Kong, Hong Kong Science Park, Beihang University, and others. Abstract "Recent advances in virtual reality (VR) technologies accelerate the creation of a flawless 3D virtual world to provide frontier social platform for human. Equall... » read more

Split Additive Manufacturing for Printed Neuromorphic Circuits (Karlsruhe Institute of Technology)


A new technical paper titled "Split Additive Manufacturing for Printed Neuromorphic Circuits" was published by researchers at Karlsruher Institut für Technologie (KIT). Abstract: "Printed and flexible electronics promises smart devices for application domains, such as smart fast moving consumer goods and medical wearables, which are generally untouchable by conventional rigid silicon tech... » read more

Heterogeneous Chip Assembly Helps Optimize Medical And Wearable Devices


Heterogeneous integration (HI) has significant implications for the medical, health, and wearables industry. At Promex, we utilize a variety of complex assembly processes to achieve HI for medical and biotech applications. This post will take a closer look at the processes associated with assembling these classes of devices. Click here to read more. » read more

Research Bits: Jan. 9


Making stretchy semiconductors Researchers from Pennsylvania State University, University of Houston, Purdue University, and Texas Heart Institute developed a new method to make soft, stretchable transistors easier and cheaper to manufacture. The lateral phase separation induced micromesh (LPSM) process involves mixing a semiconductor and an elastomer and spin coating the liquid mixture pre... » read more

Heterogeneous Chip Assembly Helps Optimize Medical And Wearable Devices


Heterogeneous integration (HI) has significant implications for the medical, health, and wearables industry. At Promex, we utilize a variety of complex assembly processes to achieve HI for medical and biotech applications. This post will take a closer look at the processes associated with assembling these classes of devices. Figure 1 provides a high-level overview of our approach. Nearly eve... » read more

Addressing SRAM Verification Challenges


SureCore Limited is an SRAM IP company based in Sheffield, the United Kingdom, that develops low power memories for current and next generation silicon process technologies. Its award-winning, world-leading, low power SRAM designs are process independent and variability tolerant, making them suitable for a wide range of technology nodes. Two major product families have been announced: PowerM... » read more

Wearable Electrotactile Rendering System w/High Spacial resolution, Rapid Refresh


A new technical paper titled "Super-resolution wearable electrotactile rendering system" was published by researchers at City University of Hong Kong (CityU) and Tencent Technology's Robotics X Laboratory. "Here, we present a wearable electrotactile rendering system that elicits tactile stimuli with both high spatial resolution (76 dots/cm2) and rapid refresh rates (4 kHz), because of a prev... » read more

← Older posts