Power/Performance Bits: Feb. 13


Silicon spintronics Engineers at the University of California, Riverside, developed new methods to detect signals from spintronic components made of low-cost metals and silicon. Spintronic devices generate little heat, use relatively minuscule amounts of electricity, and would require no energy to maintain data in memory. However, previously developed spintronic devices depend on complex struc... » read more

Power/Performance Bits: Jan. 9


Eel-inspired power Researchers at the University of Michigan, the University of Fribourg, and the University of California-San Diego developed soft power cells with the potential to power implanted medical devices. Made of hydrogel and salt, the soft cells form the first potentially biocompatible artificial electric organ that generates more than 100 volts at a low current, the team says, enou... » read more

The IoT Is Alive And Well


There has been a lot of grumbling lately about the IoT and how it has failed to live up to expectations. But the problem may be less about the success of the IoT than the ability of any group of chipmakers and manufacturers to capitalize on its success. The IoT has been growing steadily since the term was first coined by Kevin Ashton, who began using RFID inside of Procter & Gamble to ma... » read more

Power/Performance Bits: Dec. 5


Solar jet fuel Researchers at ETH Zurich demonstrated the ability to use solar energy to create the precursor to jet fuel from water and carbon dioxide, a process that could lead to carbon-neutral air travel. The scientists performed 295 consecutive cycles in a 4 kW solar reactor, yielding 700 standard liters of hydrogen and carbon monoxide (syngas), the precursor to kerosene and other liqu... » read more

Medical IoT Heats Up


Ever since the IoT was first introduced as a concept, the possibility of using ordinary devices or chips for monitoring health has been mostly an unfulfilled promise. In fact, one of the biggest selling points of smart watches and other wearables initially was the ability to monitor everything from heart irregularities to sugar levels on a continuous basis rather than a once-a-year electroca... » read more

Power/Performance Bits: Oct. 17


Harvesting body heat Researchers at the Georgia Institute of Technology developed a flexible, wearable thermoelectric generator that can harvest energy from body heat to power simple biosensors. Thermoelectric generators have been available for decades, but standard designs use inflexible inorganic materials that are too toxic for use in wearable devices. The team's device uses thousands... » read more

Power/Performance Bits: Sept. 26


Long-range communication Researchers at the University of Washington developed devices that run on almost zero power can transmit data across distances of up to 2.8 kilometers. The long-range backscatter system, which uses reflected radio signals to transmit data at extremely low power, achieved reliable coverage throughout 4800-square-foot house, an office area covering 41 rooms and a one-acr... » read more

Power/Performance Bits: Aug. 29


Colored solar panels Researchers from AMOLF, the University of Amsterdam (UvA) and the Energy Research Centre of the Netherlands (ECN) developed a technology to create efficient bright green solar panels in the hopes that a greater array of colors will prompt greater adoption among architects and builders who might see the traditional blue or black panels as an eyesore. The panels have a gr... » read more

Power/Performance Bits: Aug. 15


Solar sunglasses Researchers at the Karlsruhe Institute of Technology (KIT) developed sunglasses with colored, semitransparent organic solar cells applied onto the lenses capable of supplying a microprocessor and two displays with electric power. The solar cell lenses, perfectly fitted to a commercial frame, have a thickness of approx. 1.6 millimeters and weigh about six grams, just like th... » read more

Power/Performance Bits: June 6


Magnetoelectric RAM A team of researchers from the Institute of Electronics, Microelectronics and Nanotechnology in Lille, France and the Russian Academy of Sciences in Moscow developed a magnetoelectric random access memory (MELRAM) cell that has the potential to increase power efficiency, and thereby decrease heat waste, by orders of magnitude for read operations at room temperature. Th... » read more

← Older posts