It’s Eternal Spring For AI


The field of Artificial Intelligence (AI) has had many ups and downs largely due to unrealistic expectations created by everyone involved including researchers, sponsors, developers, and even consumers. The “reemergence” of AI has lot to do with recent developments in supporting technologies and fields such as sensors, computing at macro and micro scales, communication networks and progre... » read more

Optimizing Power And Performance For Machine Learning At The Edge


While machine learning (ML) algorithms are popular for running on enterprise Cloud systems for training neural networks, AI/ML chipsets for edge devices are growing at a triple digit rate, according to Tractica “Deep Learning Chipsets” (Figure 1). Edge devices include automobiles, drones, and mobile devices that are all employing AI/ML to provide valuable functionality. Figure 1: Marke... » read more

Implementing Low-Power Machine Learning In Smart IoT Applications


By Pieter van der Wolf and Dmitry Zakharov Increasingly, machine learning (ML) is being used to build devices with advanced functionalities. These devices apply machine learning technology that has been trained to recognize certain complex patterns from data captured by one or more sensors, such as voice commands captured by a microphone, and then performs an appropriate action. For example,... » read more

Building An Efficient Inferencing Engine In A Car


David Fritz, who heads corporate strategic alliances at Mentor, a Siemens Business, talks about how to speed up inferencing by taking the input from sensors and quickly classifying the output, but also doing that with low power. » read more