Research Bits: July 5


UTe2 breakthrough for quantum computing Scientists from the Macroscopic Quantum Matter Group laboratory at the University College Cork (UCC) in Ireland discovered a spatially modulating superconducting state in the superconductor uranium ditelluride (UTe2) that could be useful as in topological quantum computing. Using a powerful quantum microscope, the team found that the some of the electro... » read more

Power/Performance Bits: Jan. 19


Electronic skin for health tracking Researchers at the University of Colorado Boulder developed a stretchy electronic 'skin' that can perform the tasks of wearable fitness devices such as tracking body temperature, heart rate, and movement patterns. "Smart watches are functionally nice, but they're always a big chunk of metal on a band," said Wei Zhang, a professor in the Department of Chem... » read more

Power/Performance Bits: June 4


Flexible high-temp dielectric Researchers at Rice University, Georgia Institute of Technology, and Cornell University developed a new high-temperature dielectric nanocomposite for flexible electronics, energy storage, and electric devices that combines one-dimensional polymer nanofibers and two-dimensional boron nitride nanosheets. The polymer nanofibers act as a structural reinforcement, w... » read more

System Bits: June 26


I’m enjoying a very busy Design Automation Conference this week in San Francisco, and on the lookout for interesting research topics here. In the meantime, enjoy a few interesting items from around the globe. AI platform diagnoses Zika and other pathogens University of Campinas (UNICAMP) researchers in Brazil have developed an AI platform that can diagnose several diseases with a high deg... » read more

Power/Performance Bits: July 23


Thinnest light absorber Expected to potentially reduce the cost and improve the efficiency of solar cells, Stanford University scientists report they have created the thinnest, most efficient absorber of visible light on record. The nanoscale structure is thousands of times thinner than an ordinary sheet of paper. The researchers said achieving complete absorption of visible light with a mi... » read more