Chip Industry Week In Review


By Jesse Allen, Karen Heyman, and Liz Allan Renesas will acquire Transphorm, which designs and manufactures gallium nitride power devices, for about $339 million. GaN, which is a wide-bandgap technology, is used for high-voltage applications in a slew of markets, including EVs and EV fast chargers, as well as data centers and industrial applications. Cadence acquired Invecas, a provider o... » read more

Money Pours Into New Fabs And Facilities


Fabs, packaging, test and assembly, and R&D all drew major funding in 2023. Companies poured money into offshore locations, such as India and Malaysia, to access a larger workforce and lower costs, while also partnering with governments to secure domestic supply chains amid ongoing geopolitical turmoil. Looking ahead, artificial intelligence (AI), quantum computing, and data applications... » read more

Top Tech Videos of 2023


In 2023, heterogeneous integration, RISC-V, and advanced node logic scaling and advanced packaging dominated the semiconductor industry. All of those topics spurred deep discussions at conferences, and they were the subject of Semiconductor Engineering's most popular videos. Of the videos published in 2023, here are the highlights from our five channels: Manufacturing, Packaging & Mater... » read more

Data Formats For Inference On The Edge


AI/ML training traditionally has been performed using floating point data formats, primarily because that is what was available. But this usually isn't a viable option for inference on the edge, where more compact data formats are needed to reduce area and power. Compact data formats use less space, which is important in edge devices, but the bigger concern is the power needed to move around... » read more

AI Races To The Edge


AI is becoming increasingly sophisticated and pervasive at the edge, pushing into new application areas and even taking on some of the algorithm training that has been done almost exclusively in large data centers using massive sets of data. There are several key changes behind this shift. The first involves new chip architectures that are focused on processing, moving, and storing data more... » read more

AI Accelerator Architectures Poised For Big Changes


AI is driving a frenzy of activity in the chip world as companies across the semiconductor ecosystem race to include AI in their product lineup. The challenge now is how to make AI run faster, use less energy, and to be able to leverage it from the edge to the data center — particularly with the rollout of large language models. On the hardware side, there are two main approaches for accel... » read more

EDA Pushes Deeper Into AI


EDA vendors are ramping up the use of AI/ML in their tools to help chipmakers and systems companies differentiate their products. In some cases, that means using AI to design AI chips, where the number and breadth of features and potential problems is exploding. What remains to be seen is how well these AI-designed chips behave over time, and where exactly AI benefits design teams. And all o... » read more

Considerations For Accelerating On-Device Stable Diffusion Models


One of the more powerful – and visually stunning – advances in generative AI has been the development of Stable Diffusion models. These models are used for image generation, image denoising, inpainting (reconstructing missing regions in an image), outpainting (generating new pixels that seamlessly extend an image's existing bounds), and bit diffusion. Stable Diffusion uses a type of dif... » read more

Flipping Processor Design On Its Head


AI is changing processor design in fundamental ways, combining customized processing elements for specific AI workloads with more traditional processors for other tasks. But the tradeoffs are increasingly confusing, complex, and challenging to manage. For example, workloads can change faster than the time it takes to churn out customized designs. In addition, the AI-specific processes may ex... » read more

Unlocking The Power Of Edge Computing With Large Language Models


In recent years, Large Language Models (LLMs) have revolutionized the field of artificial intelligence, transforming how we interact with devices and the possibilities of what machines can achieve. These models have demonstrated remarkable natural language understanding and generation abilities, making them indispensable for various applications. However, LLMs are incredibly resource-intensi... » read more

← Older posts Newer posts →