中文 English

AI Chips Must Get The Floating-Point Math Right


Most AI chips and hardware accelerators that power machine learning (ML) and deep learning (DL) applications include floating-point units (FPUs). Algorithms used in neural networks today are often based on operations that use multiplication and addition of floating-point values, which subsequently need to be scaled to different sizes and for different needs. Modern FPGAs such as Intel Arria-10 ... » read more

Pros, Cons Of ML-Specific Chips


Semiconductor Engineering sat down with Rob Aitken, an Arm fellow; Raik Brinkmann, CEO of OneSpin Solutions; Patrick Soheili, vice president of business and corporate development at eSilicon; and Chris Rowen, CEO of Babblelabs. What follows are excerpts of that conversation. To view part one, click here. Part two is here. SE: Is the industry's knowledge of machine learning keeping up with th... » read more