New Ways To Optimize GEMM-Based Applications Targeting Two Leading AI-Optimized FPGA Architectures


A technical paper titled “Efficient Approaches for GEMM Acceleration on Leading AI-Optimized FPGAs” was published by researchers at The University of Texas at Austin and Arizona State University. Abstract: "FPGAs are a promising platform for accelerating Deep Learning (DL) applications, due to their high performance, low power consumption, and reconfigurability. Recently, the leading FPGA... » read more