Power/Performance Bits: March 17


MRAM speed Researchers at ETH Zurich and Imec investigated exactly how quickly magnetoresistive RAM (MRAM) can store data. In the team's MRAM, electrons with opposite spin directions are spatially separated by the spin-orbit interaction, creating an effective magnetic field that can be used to invert the direction of magnetization of a tiny metal dot. "We know from earlier experiments, i... » read more

Power/Performance Bits: Nov. 20


In-memory compute accelerator Engineers at Princeton University built a programmable chip that features an in-memory computing accelerator. Targeted at deep learning inferencing, the chip aims to reduce the bottleneck between memory and compute in traditional architectures. The team's key to performing compute in memory was using capacitors rather than transistors. The capacitors were paire... » read more

Power/Performance Bits: Jan. 2


Hydrogen from seawater Engineers at Columbia University are developing an ocean-based photovoltaic-powered electrolysis device that can operate as a stand-alone floating platform to split water into hydrogen fuel and oxygen. State-of-the-art electrolyzers use expensive membranes to maintain separation of the H2 and O2 gases produced by water electrolysis. The new device relies instead on an... » read more

Power/Performance Bits: Jan. 31


Microbial nanowires Microbiologists at the University of Massachusetts Amherst report that they have discovered a new type of microbial nanowire, the protein filaments that bacteria use to make electrical connections with other microbes or minerals. The team was motivated by the potential for improved "green" conducting materials for electronics. According to Derek Lovley, professor of... » read more