Optimizing Event-Based Neural Network Processing For A Neuromorphic Architecture


A new technical paper titled "Optimizing event-based neural networks on digital neuromorphic architecture: a comprehensive design space exploration" was published by imec, TU Delft and University of Twente. Abstract "Neuromorphic processors promise low-latency and energy-efficient processing by adopting novel brain-inspired design methodologies. Yet, current neuromorphic solutions still str... » read more

Keyword Transformer: A Self-Attention Model For Keyword Spotting


The Transformer architecture has been successful across many domains, including natural language processing, computer vision and speech recognition. In keyword spotting, self-attention has primarily been used on top of convolutional or recurrent encoders. We investigate a range of ways to adapt the Transformer architecture to keyword spotting and introduce the Keyword Transformer (KWT), a fully... » read more

Always-On Sub-Microwatt Spiking Neural Network Based on Spike-Driven Clock- and Power-Gating for an Ultra-Low-Power Intelligent Device


Abstract: "This paper presents a novel spiking neural network (SNN) classifier architecture for enabling always-on artificial intelligent (AI) functions, such as keyword spotting (KWS) and visual wake-up, in ultra-low-power internet-of-things (IoT) devices. Such always-on hardware tends to dominate the power efficiency of an IoT device and therefore it is paramount to minimize its power diss... » read more