Power/Performance Bits: May 5


Single material batteries Engineers at the University of Maryland created a battery made entirely out of a single material that, by incorporating the properties of both the electrodes and electrolyte, can both move electricity and store it. The reason the new battery is revolutionary is because it solves the problem of what happens at the interface between the electrolyte and the electrod... » read more

Power/Performance Bits: March 24


Power from packing peanuts After setting up a new lab, a Purdue University research team was left with a problem: mountains of packing peanuts. Instead of filling bags destined for a dumpster, the team saw an opportunity to find the packing material a useful purpose. The result was a process to convert waste packing peanuts into high-performance carbon electrodes for rechargeable lithium-... » read more

Power/Performance Bits: March 10


Simulated memories Resistance-switching cells hold promise as a faster, higher capacity, lower power replacement for current non-volatile memory. Yet "the mechanisms that govern their remarkable properties have been poorly understood, limiting our ability to assess the ultimate performance and potential for commercialization," said Alejandro Strachan, professor of materials engineering at Pu... » read more

Power/Performance Bits: March 3


Black phosphorus photodetectors Phosphorus, a highly reactive element commonly found in match heads, tracer bullets, and fertilizers, can be turned into a stable crystalline form known as black phosphorus. In a new study, researchers from the University of Minnesota used an ultrathin black phosphorus film 20 atoms thick to demonstrate high-speed data communication on nanoscale optical circui... » read more

Power/Performance Bits: Feb. 17


What can snails teach us about creating batteries? Evgenia Barannikova, a graduate student at University of Maryland, Baltimore County presented the current state of research in using biology to improve the properties of lithium ion batteries at the 59th annual meeting of the Biophysical Society, held Feb. 7-11 in Baltimore, Maryland. One of the inspirations for her research was the way t... » read more

Power/Performance Bits: Feb. 3


Bulletproof vests for batteries It was almost two years ago that the Boeing Dreamliner was grounded because of fires caused by its lithium-ion batteries. Now researchers at the University of Michigan have used nanofibers extracted from Kevlar, best known as the material in bulletproof vests, to create a new barrier between the electrodes in a lithium-ion battery. Lithium atoms in batterie... » read more

Power/Performance Bits: Jan. 27


Improving batteries By digging into the complex science behind the formation of dendrites that cause lithium-ion batteries to fail, research by Purdue University engineers could bring safer, longer-lasting batteries capable of being charged within minutes instead of hours. According to the researchers, dendrites form on anode electrodes and may continue to grow until causing an internal sho... » read more

Power/Performance Bits: Jan. 13


Glass instead of crystals Since today's lithium-ion batteries are not good enough if our future energy system is to rely on electrical power, researchers around the world are continually looking to improve capacity and energy density. To this end, ETH Zurich researchers have developed a type of glass that can be used as an electrode material in lithium-ion batteries. ETH researchers discove... » read more

Power/Performance Bits: Oct. 7


Crumpled graphene MIT researchers have now found that crumpling a piece of graphene “paper” — a material formed by bonding together layers of the 2D form of carbon — can yield properties that could be useful for creating extremely stretchable supercapacitors to store energy for flexible electronic devices, such as wearable or implantable biomedical sensors. The team said the new, fl... » read more

Power/Performance Bits: Sept. 16


Phosphorus: a promising semiconductor According to researchers at Rice University, defects damage the ideal properties of many 2D materials, like carbon-based graphene, but phosphorus just shrugs, making it a promising candidate for nano-electronic applications that require stable properties. The team analyzed the properties of elemental bonds between semiconducting phosphorus atoms in 2D s... » read more

← Older posts Newer posts →