AI At The Edge: Optimizing AI Algorithms Without Sacrificing Accuracy


The ultimate measure of success for AI will be how much it increases productivity in our daily lives. However, the industry has huge challenges in evaluating progress. The vast number of AI applications is in constant churn: finding the right algorithm, optimizing the algorithm, and finding the right tools. In addition, complex hardware engineering is rapidly being updated with many different s... » read more

Deep Reinforcement Learning to Dynamically Configure NoC Resources


New research paper titled "Deep Reinforcement Learning Enabled Self-Configurable Networks-on-Chip for High-Performance and Energy-Efficient Computing Systems" from Md Farhadur Reza at Eastern Illinois University. Find the open access technical paper here. Published June 2022. M. F. Reza, "Deep Reinforcement Learning Enabled Self-Configurable Networks-on-Chip for High-Performance and Energ... » read more

ETH Zurich: PIM (Processing In Memory) Architecture, UPMEM & PrIM Benchmarks


New paper technical titled "Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture" led by researchers at ETH Zurich. Researchers provide a comprehensive analysis of the first publicly-available real-world PIM architecture, UPMEM, and introduce PrIM (Processing-In-Memory benchmarks), a benchmark suite of 16 workloads from different application domai... » read more

Deep Learning Applications For Material Sciences: Methods, Recent Developments


New technical paper titled "Recent advances and applications of deep learning methods in materials science" from researchers at NIST, UCSD, Lawrence Berkeley National Laboratory, Carnegie Mellon University, Northwestern University, and Columbia University. Abstract "Deep learning (DL) is one of the fastest-growing topics in materials data science, with rapidly emerging applications spanning... » read more

Novel Spintronic Neuro-mimetic Device Emulating the LIF Neuron Dynamics w/High Energy Efficiency & Compact Footprints


New technical paper titled "Noise resilient leaky integrate-and-fire neurons based on multi-domain spintronic devices" from researchers at Purdue University. Abstract "The capability of emulating neural functionalities efficiently in hardware is crucial for building neuromorphic computing systems. While various types of neuro-mimetic devices have been investigated, it remains challenging to... » read more

Hybrid Method For More Reliable Virtual Sensors Within Vehicle Dynamics Control Systems


New technical paper titled "Ensuring the Reliability of Virtual Sensors Based on Artificial Intelligence within Vehicle Dynamics Control Systems" from University of Duisburg-Essen. Abstract "The use of virtual sensors in vehicles represents a cost-effective alternative to the installation of physical hardware. In addition to physical models resulting from theoretical modeling, artificial in... » read more

Neuromorphic HW Fabric That Supports A Recently Proposed Class of Stochastic Neural Network


New research paper titled "Neural sampling machine with stochastic synapse allows brain-like learning and inference" from University of Notre Dame and Department of Cognitive Sciences, University of California Irvine. Abstract "Many real-world mission-critical applications require continual online learning from noisy data and real-time decision making with a defined confidence level. Brain-... » read more

Performing Edge Detection With Oscillatory Neural Networks as a Hetero-associative Memory


New research paper titled "Oscillatory Neural Network as Hetero-Associative Memory for Image Edge Detection" from LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier. Abstract "The increasing amount of data to be processed on edge devices, such as cameras, has motivated Artificial Intelligence (AI) integration at the edge. Typical image processing me... » read more

New Neural Processors Address Emerging Neural Networks


It’s been ten years since AlexNet, a deep learning convolutional neural network (CNN) model running on GPUs, displaced more traditional vision processing algorithms to win the ImageNet Large Scale Visual Recognition Competition (ILSVRC). AlexNet, and its successors, provided significant improvements in object classification accuracy at the cost of intense computational complexity and large da... » read more

Inverse Design of Inflatable Soft Membranes Through Machine Learning


Abstract "Across fields of science, researchers have increasingly focused on designing soft devices that can shape-morph to achieve functionality. However, identifying a rest shape that leads to a target 3D shape upon actuation is a non-trivial task that involves inverse design capabilities. In this study, a simple and efficient platform is presented to design pre-programmed 3D shapes starting... » read more

← Older posts Newer posts →