System Bits: April 16


Characterizing 2D borophene Researchers at Rice and Northwestern universities collaborated on a method to view the polymorphs of 2D borophene crystals, providing insights into the lattice configurations of the two-dimensional material. Boris Yakobson, a materials physicist at Rice’s Brown School of Engineering, and materials scientist Mark Hersam of Northwestern led a team that not only d... » read more

System Bits: Jan. 14


Integrated photonics platform Researchers at Harvard’s John A. Paulson School of Engineering and Applied Sciences came up with an integrated photonics platform capable of storing light and electrically controlling its frequency or color through a microchip. Mian Zhang, first author of the resulting paper, says, “Many quantum photonic and classical optics applications require shifting of op... » read more

Power/Performance Bits: June 12


AI for solar materials In the search for better organic photovoltaic materials, researchers at Osaka University turned to machine learning to help identify candidates. While organic photovoltaics (OPVs) are promising on a cost basis, they do not yet have the required power conversion efficiency (PCE) necessary for commercialization. A key element in this is the semiconducting polymer layer. ... » read more

Manufacturing Bits: April 17


Finding metallic glass Using machine learning techniques, a group of researchers have accelerated the discovery of an alloy called metallic glass. Northwestern University, the Department of Energy’s National Accelerator Laboratory and the National Institute of Standards and Technology (NIST) have devised a shortcut for discovering and improving metallic glass. In metallic glass, the at... » read more

Power/Performance Bits: Jan. 30


Wavy display architecture Researchers at KAUST developed a new transistor architecture for flexible ultrahigh resolution devices aimed at boosting the performance of the display circuitry. Flat-panel displays use thin-film transistors, acting as switches, to control the electric current that activates individual pixels consisting of LEDs or liquid crystals. A higher field-effect mobility of... » read more

Power/Performance Bits: Jan. 16


Lithium-iron-oxide battery Scientists at Northwestern University and Argonne National Laboratory developed a rechargeable lithium-iron-oxide battery that can cycle more lithium ions than its common lithium-cobalt-oxide counterpart, leading to a much higher capacity. For their battery, the team not only replaced cobalt with iron, but forced oxygen to participate in the reaction process as we... » read more

The Week in Review: IoT


Products/Services Vancouver, B.C.-based Riot Micro has brought out the RM1000 baseband modem chip for the cellular Internet of Things. The device is said to use Bluetooth Low Energy and Wi-Fi techniques to provide low-power and lower-cost connectivity, like short-range wireless systems. The chip is being marketed to module manufacturers and OEMs developing narrowband IoT and LTE-M products for... » read more

Power/Performance Bits: June 13


Theoretical all-carbon circuits Engineers at the University of Texas at Dallas, the University of Illinois at Urbana-Champaign, the University of Central Florida, and Northwestern University designed a novel computing system made solely from carbon. "The concept brings together an assortment of existing nanoscale technologies and combines them in a new way," said Dr. Joseph S. Friedman, ass... » read more

Manufacturing Bits: April 18


3D printing on Mars Northwestern University has demonstrated the ability to print 3D-based structures using compounds that resemble Martian and lunar dust. The idea is that if humans begin to colonize the moon and Mars, they may require 3D printers. With 3D printers, humans can make small tools, buildings and other objects. For this, researchers from Northwestern have developed novel in... » read more

System Bits: Jan. 3


Clues to high-temp superconductivity Offering clues about the microscopic origins of high-temperature superconductivity, physicists at Rice University’s Center for Quantum Materials (RCQM) have created a new iron-based material. The material is a formulation of iron, sodium, copper and arsenic created by Rice graduate student Yu Song in the laboratory of physicist Pengcheng Dai. The recip... » read more

← Older posts Newer posts →