Front-End Technologies Are The New Back-End Tools: Using Picosecond Ultrasonics Technology For AI Packages, Part 1


If you are a part of the semiconductor industry or simply someone interested in the field, you have likely heard what has become a common refrain: the back-end of the process is becoming more like the front-end of the process. In other words, the technologies that were once exclusively deployed in the first part of the process are being used to meet the increasingly stringent requirements of ad... » read more

Challenges In Using Sub-7nm ICs In Automotive


The automotive industry is producing vehicles with increasing levels of real-time decision-making, enabled by thousands of ICs, sensors, and multi-chip packages, but making sure these systems work flawlessly throughout their expected lifetimes is a growing challenge. Automotive chips traditionally were developed at mature process nodes in five- to seven-year cycles, but much has changed over... » read more

Rethinking Chip Reliability For Harsh Conditions


As semiconductors push into environments once considered untenable, reliability expectations are being redefined. From the vacuum of space and the inside of jet engines to deep industrial automation and electrified drivetrains, chips now must endure extreme temperature swings, corrosive atmospheres, mechanical vibration, radiation, and unpredictable power cycles, all while delivering increasing... » read more

Overlay, Critical Dimension, And Z-Height Metrology Solutions For Advanced Packaging


The consumer’s thirst for AI-based applications is powering the ever-evolving electronics industry. Applications delivering higher levels of information in human language-like form, smarter at-home gadgets, the ability to receive a medical diagnosis without a doctor’s visit and the convenience of autonomous vehicles are among the applications powering this thirst. To better enable these app... » read more

Need For Speed Drives Targeted Testing


As packaging complexity increases and nodes shrink, defect detection becomes significantly more difficult. Engineers must contend with subtle variations introduced during fabrication and assembly without sacrificing throughput. New material stacks degrade signal-to-noise ratios, which makes metrology more difficult. At the same time, inspection systems face a more nuanced challenge — how t... » read more

Why Thin Film Measurements Matter


Semiconductor devices are becoming thinner and more complex, making thin deposited films even harder to measure and control. With 3nm node devices in production and 2nm nodes ramping toward first-silicon, the importance of precise film measurement is only growing in significance as fabs seek to maintain the performance and reliability of leading-edge devices. Whether it’s the read and writ... » read more

Hunting For Macro Defects


Detecting macro-defects early in the wafer processing flow is vital for yield and process improvement, and it is driving innovations in both inspection techniques and wafer test map analysis. At the wafer level, a macro-defect can affect more than one die, and in some cases large regions of a wafer. Finding macro defects can indicate a significant issue with a process module, a particular fi... » read more

Need For KGD Drives Singulated Die Screening


The move to multi-die packaging is driving chipmakers to develop more cost-effective ways to ensure only known-good die are integrated into packages, because the price of failure is significantly higher than with a single die. Better methods for inspecting and testing these devices are already starting to roll out. High-throughput infrared inspection is capable of catching more sub-surface d... » read more

Measuring Multi-Layer Ultra-Thin Critical Films


Artificial intelligence is one of the driving forces in today’s semiconductor industry, with more traditional market drivers like high performance compute and smart phones continuing to play important roles. This situation is unlikely change in the years ahead as chip makers continue their quest to create the most advanced nodes. With 3nm nodes in production and 2nm nodes on the horizon, the ... » read more

Automation And AI Improve Failure Analysis


When a chip malfunctions it’s the job of the failure analysis engineer to determine how it failed or significantly deviated from its key performance metrics. The cost of failure in the field can be huge in terms of downtime, recalls, damage to a company’s reputation, and more. For these reasons, chipmakers take customer returns very seriously, focusing resources to quickly get to the bot... » read more

← Older posts