Power/Performance Bits: Sept. 22


Drawing sensors on skin Researchers from the University of Houston and University of Chicago created an ink pen that can draw multifunctional sensors and circuits directly on skin. These "drawn-on-skin electronics" aim to provide more precise health data, free of the artifacts that are associated with wearable devices and flexible electronic patches. Caused when the sensor doesn't move prec... » read more

Power/Performance Bits: Sept. 1


Cooling sensors with lasers Researchers at the University of Washington developed a way to cool a solid semiconductor sensor component with an infrared laser. The laser was able to cool the solid semiconductor by at least 20 degrees C, or 36 F, below room temperature. The device uses a cantilever, similar to a diving board, that can oscillate in response to thermal energy at room temperatur... » read more

Power/Performance Bits: Aug. 10


Flexible electrodes for thin films Researchers from the University of Queensland and ARC Centre of Excellence in Exciton Science (University of Melbourne) developed a material for flexible, recyclable, transparent electrodes that could be used in things like solar panels, touchscreens, and smart windows. Eser Akinoglu of the ARC Centre of Excellence in Exciton Science said, "The performance... » read more

Power/Performance Bits: June 8


High temp capacitor Researchers at Pennsylvania State University doped a dielectric capacitor to increase storage capacity while also increasing electric charge efficiency, enabling the capacitor to withstand greater voltage with very little energy loss at temperatures higher than 300 degrees Fahrenheit. “What we have done is to use interface effects in nano-dopants to increase both the stor... » read more

Power/Performance Bits: March 31


Tellurium transistors Researchers from Purdue University, Washington University in St Louis, University of Texas at Dallas, and Michigan Technological University propose the rare earth element tellurium as a potential material for ultra-small transistors. Encapsulated in a nanotube made of boron nitride, tellurium helps build a field-effect transistor with a diameter of two nanometers. ... » read more

Power/Performance Bits: March 9


Healing perovskites Researchers at Brown University found that while perovskite solar cells can crack easily, they are also capable of healing those cracks. "The efficiency of perovskite solar cells has grown very quickly and now rivals silicon in laboratory cells," said Nitin Padture, a professor in Brown's School of Engineering and director of Brown's Institute for Molecular and Nanoscale... » read more

Power/Performance Bits: Jan. 13


Ferroelectric memory Researchers at the Moscow Institute of Physics and Technology and North Carolina State University developed a ferroelectric memory cell and a method for measuring the electric potential distribution across a ferroelectric capacitor, an important aspect of creating new nonvolatile ferroelectric devices. The team's new ferroelectric memory cell is made from a 10nm thick z... » read more

Power/Performance Bits: Dec. 3


Waking up IoT devices Researchers at UC San Diego developed an ultra-low power wake-up receiver chip that aims to reduce the power consumption of sensors, wearables, and Internet of Things devices that only need to communicate information periodically. "The problem now is that these devices do not know exactly when to synchronize with the network, so they periodically wake up to do this eve... » read more

Power/Performance Bits: Aug. 5


Biofuels from microorganisms Researchers at Uppsala University are working on adapting microorganisms to be capable of producing useful biofuels out of carbon dioxide and solar energy. The team is focused on a series of modified cyanobacteria that produces the alcohol butanol, said Pia Lindberg, Senior Lecturer at the Department of Chemistry Ångström Laboratory, Uppsala University. "When ... » read more

Power/Performance Bits: June 10


Quantum dots plus perovskites Researchers at the University of Toronto and KAUST created a hybrid material for solar cells that utilizes both perovskites and quantum dots. Both quantum dots and perovskites suffer from instability: perovskites degrade quickly and certain types become incapable of fully absorbing solar radiation at room temperature, while quantum dots must be covered with a p... » read more

← Older posts