Managing Voltage Variation


Engineers make many tradeoffs when designing SoC’s to better meet design specifications. Power, Performance and Area (PPA) are the primary goals and all three impact the cost of the implementation. For example, higher power and performance can both require more expensive packaging for power and signal integrity as well as cooling. The larger the die area the fewer die per wafer which drives u... » read more

Designing A Better Clock Network


Laying the proper clock network architecture foundation makes all the difference for the best performance, power, and timing of a chip, particularly in advanced node SoCs packed with billions of transistors. Each transistor, which acts like a standard cell, needs a clock. An efficient clock network should ensure the switching transistors save power. In today’s advanced nodes, when a design... » read more

Dealing With Sub-Threshold Variation


Chipmakers are pushing into sub-threshold operation in an effort to prolong battery life and reduce energy costs, adding a whole new set of challenges for design teams. While process and environmental variation long have been concerns for advanced silicon process nodes, most designs operate in the standard “super-threshold” regime. Sub-threshold designs, in contrast, have unique variatio... » read more