Disaggregating And Extending Operating Systems


The push toward disaggregation and customization in hardware is starting to be mirrored on the software side, where operating systems are becoming smaller and more targeted, supplemented with additional software that can be optimized for different functions. There are two main causes for this shift. The first is rising demand for highly optimized and increasingly heterogeneous designs, which... » read more

What Machine Learning Can Do In Fabs


Semiconductor Engineering sat down to discuss the issues and challenges with machine learning in semiconductor manufacturing with Kurt Ronse, director of the advanced lithography program at Imec; Yudong Hao, senior director of marketing at Onto Innovation; Romain Roux, data scientist at Mycronic; and Aki Fujimura, chief executive of D2S. What follows are excerpts of that conversation. L-R:... » read more

Optimizing Machine Learning Workloads On Power-Efficient Devices


Software frameworks for neural networks, such as TensorFlow, PyTorch, and Caffe, have made it easier to use machine learning as an everyday feature, but it can be difficult to run these frameworks in an embedded environment. Limited budgets for power, memory, and computation can all make this more difficult. At Arm, we’ve developed Arm NN, an inference engine that makes it easier to target di... » read more