Chip Industry Week In Review


Infineon rolled out the world's first 300mm gallium nitride (GaN) wafer, opening the door for high-volume manufacturing of GaN-based power semiconductors. A 300mm wafer contains 2.3 times as many chips per wafer as a 200mm wafer. Fig.1: Infineon's 300mm GaN wafer. Source: Infineon The Semiconductor Industry Association released its 2024 State of the U.S. Semiconductor Industry report th... » read more

Dual Graphite-Gated BLG As Platform for Cryogenic FETs


A technical paper titled “Ultra-steep slope cryogenic FETs based on bilayer graphene” was published by researchers at RWTH Aachen University, Forschungszentrum Julich, National Institute for Materials Science (Japan), and AMO GmbH. "Here, we show that FETs based on Bernal stacked bilayer graphene encapsulated in hexagonal boron nitride and graphite gates exhibit inverse subthreshold slop... » read more

Chip Industry Week In Review


The University of Texas at Austin’s Texas Institute for Electronics (TIE) was awarded $840 million to establish a Department of Defense microelectronics manufacturing center. This center will focus on developing advanced semiconductor microsystems to enhance U.S. defense systems. The project is part of DARPA's NGMM Program. The U.S. Dept. of Commerce announced preliminary terms with Global... » read more

Chip Industry Week In Review


Samsung and Synopsys collaborated on the first production tapeout of a high-performance mobile SoC design, including CPUs and GPUs, using the Synopsys.ai EDA suite on Samsung Foundry's gate-all-around (GAA) process. Samsung plans to begin mass production of 2nm process GAA chips in 2025, reports BusinessKorea. UMC developed the first radio frequency silicon on insulator (RF-SOI)-based 3D IC ... » read more

Single-Molecule Transistor Using Quantum Interference


A new technical paper titled "Quantum interference enhances the performance of single-molecule transistors" was published by researchers at Queen Mary University of London, University of Oxford, Lancaster University, and University of Waterloo. Abstract "Quantum effects in nanoscale electronic devices promise to lead to new types of functionality not achievable using classical electronic co... » read more

Quantum Computing Challenged By Security, Error Correction


The number and volume of warnings about a post-quantum cryptography (PQC) world are rising, as governments, banks, and other entities prepare for a rash of compromised data and untrustworthy digital signatures. Exactly when this will become a genuine threat is still somewhat fuzzy, because it depends on progress in developing robust qubits. A report by McKinsey & Co. estimates that by 20... » read more

Optimizing Quantum Gates For Error Correction in Superconducting Qubits (Google AI)


A new technical paper titled "Optimizing quantum gates towards the scale of logical qubits" was published by researchers at Google AI and UC Riverside. Abstract "A foundational assumption of quantum error correction theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance. Two major challenges that could become fundamental road... » read more

An Open Hardware Approach in Quantum Technology


A technical paper titled "Open Hardware Solutions in Quantum Technology" was published by researchers at Unitary Fund, Qruise GmbH, Technical University of Valencia, Lawrence Berkeley National Laboratory, Fermi National Accelerator Laboratory, Sandia National Laboratories, and others. Abstract "Quantum technologies such as communications, computing, and sensing offer vast opportunities for ... » read more

Rapid Exchange Cooling With Trapped Ions For Implementation In A Quantum Charge-Coupled Device


A technical paper titled “Rapid exchange cooling with trapped ions” was published by researchers at Georgia Tech Research Institute. Abstract: "The trapped-ion quantum charge-coupled device (QCCD) architecture is a leading candidate for advanced quantum information processing. In current QCCD implementations, imperfect ion transport and anomalous heating can excite ion motio... » read more

How Secure Are FPGAs?


The unique hybrid software/hardware nature of FPGAs makes them tempting targets for cyberattacks, while also enabling them to rebuff attacks and change the attack surface before significant damage can be done. But it's becoming increasingly challenging to address all the potential vulnerabilities. FPGAs are often included in larger systems, each with their own unique attack vectors as well a... » read more

← Older posts