Quantum Batteries Constructed of a Microcavity Enclosing a Molecular Dye


Research paper titled "Superabsorption in an organic microcavity: Toward a quantum battery" from researchers at University of Adelaide (Australia), University of Sheffield (UK), Politecnico di Milano (Italy), University of St Andrews (UK), and Heriot-Watt University. Abstract (Partial) "Here, we implement experimentally a paradigmatic model of a quantum battery, constructed of a microcavity... » read more

Experimental photonic quantum memristor


Abstract "Memristive devices are a class of physical systems with history-dependent dynamics characterized by signature hysteresis loops in their input–output relations. In the past few decades, memristive devices have attracted enormous interest in electronics. This is because memristive dynamics is very pervasive in nanoscale devices, and has potentially groundbreaking applications ranging... » read more

Wavelength Multiplexed Ultralow-Power Photonic Edge Computing


Abstract "Advances in deep neural networks (DNNs) are transforming science and technology. However, the increasing computational demands of the most powerful DNNs limit deployment on low-power devices, such as smartphones and sensors -- and this trend is accelerated by the simultaneous move towards Internet-of-Things (IoT) devices. Numerous efforts are underway to lower power consumption, but ... » read more

QubiC: An Open-Source FPGA-Based Control and Measurement System for Superconducting Quantum Information Processors


Abstract: "As quantum information processors grow in quantum bit (qubit) count and functionality, the control and measurement system becomes a limiting factor to large-scale extensibility. To tackle this challenge and keep pace with rapidly evolving classical control requirements, full control stack access is essential to system-level optimization. We design a modular field-programmable gate a... » read more

Design of strongly nonlinear graphene nanoelectromechanical systems in quantum regime


ABSTRACT "We report on the analysis and design of atomically thin graphene resonant nanoelectromechanical systems (NEMS) that can be engineered to exhibit anharmonicity in the quantum regime. Analysis of graphene two-dimensional (2D) NEMS resonators suggests that with device lateral size scaled down to ∼10–30 nm, restoring force due to the third-order (Duffing) stiffness in graphene NE... » read more

Reconstruction of Bloch wavefunctions of holes in a semiconductor


Summary "A central goal of condensed-matter physics is to understand how the diverse electronic and optical properties of crystalline materials emerge from the wavelike motion of electrons through periodically arranged atoms. However, more than 90 years after Bloch derived the functional forms of electronic waves in crystals [1] (now known as Bloch wavefunctions), rapid scattering processes ha... » read more

Absence of Barren Plateaus in Quantum Convolutional Neural Networks


Abstract:  Quantum neural networks (QNNs) have generated excitement around the possibility of efficiently analyzing quantum data. But this excitement has been tempered by the existence of exponentially vanishing gradients, known as barren plateau landscapes, for many QNN architectures. Recently, quantum convolutional neural networks (QCNNs) have been proposed, involving a sequence of convol... » read more

MXene-GaN van der Waals metal-semiconductor junctions for high performance multiple quantum well photodetectors


Abstract: "A MXene-GaN-MXene based multiple quantum well photodetector was prepared on patterned sapphire substrate by facile drop casting. The use of MXene electrodes improves the responsivity and reduces dark current, compared with traditional Metal-Semiconductor-Metal (MSM) photodetectors using Cr/Au electrodes. Dark current of the device using MXene-GaN van der Waals junctions is reduced b... » read more

The Battle For Post-Quantum Security Will Be Won By Agility


By Thomas Poeppelmann and Martin Schlaeffer Due to their special features, quantum computers have the disruptive potential to replace existing conventional computers in many applications. They could, for example, calculate simulations of complex molecules for the chemical and pharmaceutical industry, perform complicated optimizations for the automotive and aviation industry, or create new fi... » read more

Emergent magnetic monopoles isolated using quantum-annealing computer


Using D-Wave’s quantum-annealing computer, Los Alamos National Laboratory has shown that it’s possible to isolate magnetic monopoles. This research could one day enable future nanomagnets.   Abstract: "Artificial spin ices are frustrated spin systems that can be engineered, wherein fine tuning of geometry and topology has allowed the design and characterization of exotic eme... » read more

← Older posts Newer posts →